Publications

Detailed Information

Energy flow model considering near field energy for predictions of acoustic energy in low damping medium

DC Field Value Language
dc.contributor.authorKim, Jong-Do-
dc.contributor.authorHong, Suk-Yoon-
dc.contributor.authorKwon, Hyun-Wung-
dc.contributor.authorSong, Jee-Hun-
dc.date.accessioned2011-12-08T01:38:53Z-
dc.date.available2011-12-08T01:38:53Z-
dc.date.issued2011-01-17-
dc.identifier.citationJOURNAL OF SOUND AND VIBRATION; Vol.330 2; 271-286-
dc.identifier.issn0022-460X-
dc.identifier.urihttps://hdl.handle.net/10371/75084-
dc.description.abstractThe Acoustic Energy Flow Boundary Element Method (AEFBEM) is developed to predict the acoustic energy density and intensity of an engineering system. Up to now, the acoustic energy flow model has been used only for analysis of high frequencies or radiation noise because of plane wave and far-field assumptions. In this research, a new energy flow governing equation that can consider the near field acoustic energy term and spherical wave characteristics is derived successfully to predict the acoustic energy density and intensity of a system in the medium-to-high frequency range. A near field term of acoustic energy in spherical coordinate is added to the relationship between energy density and energy flow. But with the far-field assumption, this term vanishes, so the relationship between energy density and energy flow becomes the same as that of the plane wave. By considering the near field energy term without far-field assumption, the energy density at medium frequencies can be estimated. However, the governing equation has to be numerically manipulated for use in the analysis of complex structures; therefore, the Boundary Element Method (BEM) is implemented. AEFBEM is a numerical analysis method formulated by applying the boundary element method to an acoustic energy flow governing equation. It is very powerful in predicting the acoustic energy density and intensity of complex structures in medium-to-high frequency ranges, and can analyze interior noise and radiating sound. To verify its validity, several numerical results are provided. BEM and AEFBEM were compared with respect to energy density, and the results from both methods were similar. (C) 2010 Elsevier Ltd. All rights reserved.-
dc.language.isoen-
dc.publisherACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD-
dc.titleEnergy flow model considering near field energy for predictions of acoustic energy in low damping medium-
dc.typeArticle-
dc.contributor.AlternativeAuthor김종두-
dc.contributor.AlternativeAuthor홍석윤-
dc.contributor.AlternativeAuthor권현웅-
dc.contributor.AlternativeAuthor송지훈-
dc.identifier.doi10.1016/j.jsv.2010.08.007-
dc.citation.journaltitleJOURNAL OF SOUND AND VIBRATION-
dc.description.citedreferenceLee HW, 2008, SHOCK VIB, V15, P33-
dc.description.citedreferenceKUTTRUFF H, 2007, ACOUSTICS INTRO-
dc.description.citedreferencePark YH, 2006, SHOCK VIB, V13, P137-
dc.description.citedreferencePark YH, 2006, SHOCK VIB, V13, P167-
dc.description.citedreferenceWang A, 2004, J SOUND VIB, V278, P413, DOI 10.1016/j.jsv.2003.06.018-
dc.description.citedreferenceKWON HW, 2004, THESIS SEOUL NATL U-
dc.description.citedreferenceSeo SH, 2003, J SOUND VIB, V259, P1109, DOI 10.1006/jsvi.2002.5118-
dc.description.citedreferencePark DH, 2001, J SOUND VIB, V244, P651, DOI 10.1006/jsvi.2000.3517-
dc.description.citedreferenceLe Bot A, 1998, J SOUND VIB, V211, P537-
dc.description.citedreferenceSmith MJ, 1997, J SOUND VIB, V202, P375-
dc.description.citedreferenceBOUTHIER OM, 1995, J SOUND VIB, V182, P129-
dc.description.citedreferenceBOUTHIER OM, 1995, J SOUND VIB, V182, P149-
dc.description.citedreferenceKYTHE PK, 1995, INTRO BOUNDARY ELEME-
dc.description.citedreferenceLYON RH, 1995, THEORY APPL STAT ENE-
dc.description.citedreferenceBOUTHIER OM, 1992, AIAA J, V30, P616-
dc.description.citedreferenceNEFSKE DJ, 1989, J VIB ACOUST, V111, P94-
dc.description.citedreferenceCREMER L, 1988, STRUCTURE BORNE SOUN-
dc.description.citedreferenceMORSE PMC, 1986, THEORETICAL ACOUSTIC-
dc.description.citedreferenceKINSLER LF, 1982, FUNDAMENTALS ACOUSTI-
dc.description.citedreferenceBELOV VD, 1977, SOV PHYS ACOUST+, V23, P115-
dc.description.citedreferenceWOHLEVER JC, 1973, J SOUND VIBRATION, V153, P1-
dc.description.tc0-
dc.identifier.wosid000284564800008-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share