Publications

Detailed Information

Localization and propagation analysis of ictal source rhythm by electrocorticography

DC Field Value Language
dc.contributor.authorKim, June Sic-
dc.contributor.authorIm, Chang Hwan-
dc.contributor.authorJung, Young Jin-
dc.contributor.authorKim, Eun Young-
dc.contributor.authorChung, Chun Kee-
dc.contributor.authorLee, Sang Kun-
dc.date.accessioned2012-06-18T04:55:52Z-
dc.date.available2012-06-18T04:55:52Z-
dc.date.issued2010-10-01-
dc.identifier.citationNEUROIMAGE; Vol.52 4; 1279-1288ko_KR
dc.identifier.issn1053-8119-
dc.identifier.urihttps://hdl.handle.net/10371/77115-
dc.description.abstractThe purpose of this study was to develop a novel approach for objectively estimating the locations of ictal onset zones by electrocorticography (ECoG). Conventional ECoG analyses have been performed using a 2-D space comprised of intracranial electrodes. Thus, despite the fact that ECoG data have much higher signal-to-noise ratios than electroencephalographic data, ECoG inherently requires a priori information to locate the electrodes, and thus, it is difficult to estimate the depth of epileptogenic foci using this technique. Accordingly, the authors considered that a 3-D approach is needed to determine the presence of an epileptogenic focus in the complex structure of the cortex. However, no source localization procedure has been devised to determine the location of a primary ictal source using ECoG. The authors utilized a spatiotemporal source localization technique using the first principal vectors. A directed transfer function was then employed for the time series of potential ictal sources to compute their causal inter-relationships, from which the primary sources responsible for ictal onset could be localized. Monte-Carlo simulation studies were performed to validate the feasibility and reliability of the proposed ECoG source localization technique, and the obtained results demonstrated that the mean of localization errors with a signal to white Gaussian noise ratio of 5 dB did not exceed 5 mm, even when the source was located similar to 20 mm away from the nearest electrode. This validated ictal source localization approach was applied to a number of ictal ECoG data sets from six successfully operated epilepsy patients. The resultant 3-D ictal source locations were found to coincide with surgical resection areas and with traditional 2-D electrode-based source estimates. The authors believe that this proposed ECoG-based ictal source localization method will be found useful, especially when ictal sources are located in a deep sulcus or beyond recording planes.ko_KR
dc.language.isoenko_KR
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEko_KR
dc.subjectIctal onset zoneko_KR
dc.subjectDirected transfer functionko_KR
dc.subjectEpilepsyko_KR
dc.subjectMonte-Carlo simulationko_KR
dc.subjectElectrocorticographyko_KR
dc.subjectSource localizationko_KR
dc.subjectPropagationko_KR
dc.titleLocalization and propagation analysis of ictal source rhythm by electrocorticographyko_KR
dc.typeArticleko_KR
dc.contributor.AlternativeAuthor김준식-
dc.contributor.AlternativeAuthor임창환-
dc.contributor.AlternativeAuthor정영진-
dc.contributor.AlternativeAuthor김은영-
dc.contributor.AlternativeAuthor이상건-
dc.contributor.AlternativeAuthor정천기-
dc.identifier.doi10.1016/j.neuroimage.2010.04.240-
dc.citation.journaltitleNEUROIMAGE-
dc.description.citedreferenceZhang YC, 2008, NEUROIMAGE, V42, P683, DOI 10.1016/j.neuroimage.2008.04.263-
dc.description.citedreferenceFuchs M, 2007, J CLIN NEUROPHYSIOL, V24, P101-
dc.description.citedreferenceAstolfi L, 2007, HUM BRAIN MAPP, V28, P143, DOI 10.1002/hbm.20263-
dc.description.citedreferenceYoshida F, 2007, MINIM INVAS NEUROSUR, V50, P37, DOI 10.1055/s-2007-950384-
dc.description.citedreferenceDing L, 2007, NEUROIMAGE, V34, P575, DOI 10.1016/j.neuroimage.2006.09.042-
dc.description.citedreferenceSchindler K, 2007, BRAIN, V130, P65, DOI 10.1093/brain/awl304-
dc.description.citedreferenceDing L, 2006, IEEE T BIO-MED ENG, V53, P1732, DOI 10.1109/TBME.2006.878118-
dc.description.citedreferenceOishi M, 2006, J NEUROSURG, V105, P41-
dc.description.citedreferenceFauser S, 2006, BRAIN, V129, P82, DOI 10.1093/brain/awh687-
dc.description.citedreferenceMiyagi Y, 2005, MINIM INVAS NEUROSUR, V48, P97, DOI 10.1055/s-2004-830226-
dc.description.citedreferenceBabiloni F, 2005, NEUROIMAGE, V24, P118, DOI 10.1016/j.neuroimage.2004.09.036-
dc.description.citedreferenceQUESNEY LF, 2005, ELECTROENCEPHALOGRAP-
dc.description.citedreferenceXu XL, 2004, PHYS MED BIOL, V49, P327-
dc.description.citedreferenceAssaf BA, 2003, EPILEPSIA, V44, P1320-
dc.description.citedreferenceTang L, 2003, J NEUROSURG, V98, P837-
dc.description.citedreferenceGotman J, 2003, EPILEPSIA, V44, P21-
dc.description.citedreferenceHAMMER HM, 2003, BRAIN, V126, P547-
dc.description.citedreferenceBoon P, 2002, J CLIN NEUROPHYSIOL, V19, P461-
dc.description.citedreferenceIwasaki M, 2002, EPILEPSIA, V43, P415-
dc.description.citedreferenceKaminski M, 2001, BIOL CYBERN, V85, P145-
dc.description.citedreferenceLUDERS HO, 2001, EPILEPSY SURG-
dc.description.citedreferenceOTSUBO H, 2001, J NEUROSURG, V94, P1005-
dc.description.citedreferenceWorrell GA, 2000, BRAIN TOPOGR, V12, P273-
dc.description.citedreferenceBaumgartner C, 2000, J CLIN NEUROPHYSIOL, V17, P177-
dc.description.citedreferencePaolicchi JM, 2000, NEUROLOGY, V54, P642-
dc.description.citedreferenceBAUMGARTNER C, 2000, EPILEPSIA S3, V41, P39-
dc.description.citedreferenceJung WY, 1999, J CLIN NEUROPHYSIOL, V16, P419-
dc.description.citedreferenceHenry TR, 1999, J CLIN NEUROPHYSIOL, V16, P426-
dc.description.citedreferenceWheless JW, 1999, EPILEPSIA, V40, P931-
dc.description.citedreferenceMosher JC, 1999, IEEE T BIO-MED ENG, V46, P245, DOI 10.1109/10.748978-
dc.description.citedreferenceLantz G, 1999, CLIN NEUROPHYSIOL, V110, P176-
dc.description.citedreferenceMICHEL C, 1999, J CLIN NEUROPHYSIOL, V16-
dc.description.citedreferenceFranaszczuk PJ, 1998, BRAIN TOPOGR, V11, P13-
dc.description.citedreferenceMorris HH, 1998, EPILEPSIA, V39, P307-
dc.description.citedreferenceAssaf BA, 1997, EPILEPSIA, V38, P1114-
dc.description.citedreferenceALARCON G, 1997, BRAIN, V120-
dc.description.citedreferenceEngel J, 1996, NEW ENGL J MED, V334, P647-
dc.description.citedreferenceGOLUB GH, 1996, MATRIX COMPUTATIONS-
dc.description.citedreferenceZOOMA R, 1995, J NEUROSURG, V83, P231-
dc.description.citedreferenceFRIED I, 1995, CLIN NEUROSURG, V42, P453-
dc.description.citedreferenceFRANASZCZUK PJ, 1994, ELECTROEN CLIN NEURO, V91, P413-
dc.description.citedreferenceBEBIN EM, 1993, EPILEPSIA, V34, P651-
dc.description.citedreferenceARROYO S, 1993, SURG TREATMENT EPILE, P377-
dc.description.citedreferenceTHEILER J, 1992, PHYSICA D, V58, P77-
dc.description.citedreferenceSTEFAN H, 1992, EPILEPSIA, V33, P874-
dc.description.citedreferenceMOSHER JC, 1992, IEEE T BIO-MED ENG, V39, P541, DOI 10.1109/10.141192-
dc.description.citedreferenceJAYAKAR P, 1991, J CLIN NEUROPHYSIOL, V8, P414-
dc.description.citedreferenceKAMINSKI MJ, 1991, BIOL CYBERN, V65, P203-
dc.description.citedreferenceBUCKLEY KM, 1990, IEEE T ACOUST SPEECH, V38, P1842, DOI 10.1109/29.103086-
dc.description.citedreferenceSUTHERLING WW, 1989, ANN NEUROL, V25, P373-
dc.description.citedreferenceWYLLIE E, 1988, NEUROPEDIATRICS, V19, P80-
dc.description.citedreferenceENGEL JJ, 1987, SURG TREATMENT EPILE-
dc.description.citedreferenceENGEL J, 1981, ANN NEUROL, V9, P215-
dc.description.citedreferenceAKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716-
dc.description.citedreferenceGRANGER CWJ, 1969, ECONOMETRICA, V37, P424-
dc.description.tc4-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share