Publications

Detailed Information

Surface-based functional magnetic resonance imaging analysis of partial brain echo planar imaging data at 1.5 T

DC Field Value Language
dc.contributor.authorJo, Hang Joon-
dc.contributor.authorLee, Jong-Min-
dc.contributor.authorKim, Jae-Hun-
dc.contributor.authorChoi, Chi-Hoon-
dc.contributor.authorKwon, Jun Soo-
dc.contributor.authorKim, Sun I.-
dc.contributor.authorKang, Do-Hyung-
dc.date.accessioned2012-07-05T02:27:54Z-
dc.date.available2012-07-05T02:27:54Z-
dc.date.issued2009-06-
dc.identifier.citationMAGNETIC RESONANCE IMAGING; Vol.27(5); 691-700ko_KR
dc.identifier.issn0730-725X-
dc.identifier.urihttps://hdl.handle.net/10371/78565-
dc.description.abstractSurface-based functional magnetic resonance imaging (fMRI) analysis is more sensitive and accurate than volume-based analysis for detecting neural activation. However, these advantages are less important in practical fMRI experiments with commonly used 1.5-T magnetic resonance devices because of the resolution gap between the echo planar imaging data and the cortical surface models. We expected high-resolution segmented partial brain echo planar imaging (EPI) data to overcome this problem, and the activation patterns of the high-resolution data could be different from the low-resolution data. For the practical applications of surface-based fMRI analysis using segmented EPI techniques, the effects of some important factors (e.g., activation patterns, registration and local distortions) should be intensively evaluated because the results of surface-based fMRI analyses could be influenced by them. In this Study, we demonstrated the difference between activations detected from low-resolution EPI data, which were covering whole brain, and high-resolution segmented EPI data covering partial brain by volume- and surface-based analysis methods. First, we compared the activation maps of low- and high-resolution EPI datasets; detected by volume- and surface-based analyses, with the spatial patterns of activation clusters, and analyzed the distributions of activations in occipital lobes. We also analyzed the high-resolution EPI data covering motor areas and fusiform gyri of human brain, and presented the differences of activations detected by volume- and surface-based methods.ko_KR
dc.description.sponsorshipThis work was supported by the research fund of Hanyang University
(HY-2005-000-0000-1590).
ko_KR
dc.language.isoenko_KR
dc.publisherELSEVIER SCIENCE INCko_KR
dc.subjectFunctional magnetic resonance imagingko_KR
dc.subjectSegmented echo planar imagingko_KR
dc.subjectSurface-based analysisko_KR
dc.titleSurface-based functional magnetic resonance imaging analysis of partial brain echo planar imaging data at 1.5 Tko_KR
dc.typeArticleko_KR
dc.contributor.AlternativeAuthor조항준-
dc.contributor.AlternativeAuthor이종민-
dc.contributor.AlternativeAuthor김재훈-
dc.contributor.AlternativeAuthor최치훈-
dc.contributor.AlternativeAuthor강도형-
dc.contributor.AlternativeAuthor권준수-
dc.contributor.AlternativeAuthor김선이-
dc.identifier.doi10.1016/j.mri.2008.09.002-
dc.citation.journaltitleMAGNETIC RESONANCE IMAGING-
dc.description.citedreferenceJo HJ, 2008, NEUROIMAGE, V40, P1077, DOI 10.1016/j.neuroimage.2007.12.036-
dc.description.citedreferenceLee J, 2007, MAGN RESON MED, V57, P905, DOI 10.1002/mrm.21195-
dc.description.citedreferenceBandettini P, 2007, INT J PSYCHOPHYSIOL, V63, P138, DOI 10.1016/j.ijpsycho.2006.03.016-
dc.description.citedreferenceJo HJ, 2007, NEUROIMAGE, V34, P550, DOI 10.1016/j.neuroimage.2006.09.047-
dc.description.citedreferenceVincent DJ, 2006, BRAIN TOPOGR, V18, P273, DOI 10.1007/s10548-006-0005-y-
dc.description.citedreferenceMiller KL, 2006, MAGNET RESON MED, V55, P161, DOI 10.1002/mrm.20753-
dc.description.citedreferenceKim JS, 2005, NEUROIMAGE, V27, P210, DOI 10.1016/j.neuroimage.2005.03.036-
dc.description.citedreferenceChung MK, 2005, NEUROIMAGE, V25, P1256, DOI 10.1016/j.neuroimage.2004.12.052-
dc.description.citedreferenceLerch JP, 2005, NEUROIMAGE, V24, P163, DOI 10.1016/j.neuroimage.2004.07.045-
dc.description.citedreferenceSAAD ZS, 2005, SAMPLING REQUIREMENT, P126-
dc.description.citedreferenceSaad ZS, 2003, NEUROIMAGE, V18, P494, DOI 10.1016/S1053-8119(02)00024-1-
dc.description.citedreferenceGriswold MA, 2002, MAGNET RESON MED, V47, P1202, DOI 10.1002/mrm.10171-
dc.description.citedreferenceGenovese CR, 2002, NEUROIMAGE, V15, P870, DOI 10.1006/nimg.2001.1037-
dc.description.citedreferenceMa CM, 2001, PATTERN RECOGN LETT, V22, P1439-
dc.description.citedreferenceKabani N, 2001, NEUROIMAGE, V13, P375, DOI 10.1006/nimg.2000.0652-
dc.description.citedreferenceAndrade A, 2001, HUM BRAIN MAPP, V12, P79-
dc.description.citedreferenceMacDonald D, 2000, NEUROIMAGE, V12, P340, DOI 10.1006/nimg.1999.0534-
dc.description.citedreferenceBeisteiner R, 2000, NEUROSCI LETT, V290, P13-
dc.description.citedreferenceHoogenraad FGC, 2000, MAGN RESON IMAGING, V18, P405-
dc.description.citedreferenceMenon RS, 1999, MAGNET RESON MED, V41, P230-
dc.description.citedreferenceCollins DL, 1998, IEEE T MED IMAGING, V17, P463, DOI 10.1109/42.712135-
dc.description.citedreferenceCox RW, 1996, COMPUT BIOMED RES, V29, P162-
dc.description.citedreferenceZILLES K, 1988, ANAT EMBRYOL, V179, P173-
dc.description.tc2-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share