Publications

Detailed Information

The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult-generated neurons in the dentate gyrus

Cited 34 time in Web of Science Cited 35 time in Scopus
Authors

Kim, Woon Ryoung; Park, Ok-hee; Choi, Sukwoo; Choi, Se-Young; Lee, Kea Joo; Kim, Hyun; Oppenheim, Ronald W.; Sun, Woong; Kim, Hyun Taek; Lee, Yeon Kyung; Rhyu, Im Joo; Park, Soon Kwon

Issue Date
2009-04
Publisher
WILEY-BLACKWELL PUBLISHING, INC
Citation
EUROPEAN JOURNAL OF NEUROSCIENCE, Vol.29, No.7, pp.1408-1421
Keywords
adult neurogenesisLTPcell deathBaxsynapse
Abstract
A considerable number of new neurons are generated daily in the dentate gyrus (DG) of the adult hippocampus, but only a subset of these survive, as many adult-generated neurons undergo programmed cell death (PCD). However, the significance of PCD in the adult brain for the functionality of DG circuits is not known. Here, we examined the electrophysiological and behavioral characteristics of Bax-knockout (Bax-KO) mice in which PCD of post-mitotic neurons is prevented. The continuous increase in DG cell numbers in Bax-KO mice resulted in the readjustment of afferent and efferent synaptic connections, represented by age-dependent reductions in the dendritic arborization of DG neurons and in the synaptic contact ratio of mossy fibers with CA3 dendritic spines. These neuroanatomical changes were associated with reductions in synaptic transmission and reduced performance in a contextual fear memory task in 6-month-old Bax-KO mice. These results suggest that the elimination of excess DG neurons via Bax-dependent PCD in the adult brain is required for the normal organization and function of the hippocampus.
ISSN
0953-816X
Language
English
URI
https://hdl.handle.net/10371/80363
DOI
https://doi.org/10.1111/j.1460-9568.2009.06693.x
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share