Browse

Probabilistic Duration Estimation Model for High-Rise Structural Work

Cited 16 time in Web of Science Cited 24 time in Scopus
Authors
Lee, Hyun-soo; Shin, Jae-won; Park, Moonseo; Ryu, Han-Guk
Issue Date
2009-12
Publisher
ASCE-AMER SOC CIVIL ENGINEERS
Citation
JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT-ASCE; Vol.135, No.12, pp.1289-1298
Abstract
The duration of a construction project is a key factor to consider before starting a new project, as it can determine project success or failure. Despite the high level of uncertainty and risk involved in construction, current construction planning relies on traditional deterministic scheduling methods that cannot clearly ascertain the level of uncertainty involved in a project. This, subsequently, can prolong a project`s duration, particularly when that project is high-rise structural work, which is not yet a common project type in Korea. Indeed, among construction processes, structural work is notable, as it is basically performed outdoors. Thus, no matter how precisely a schedule is developed, such projects can easily fail due to unexpected events that are beyond the planner`s control, such as changes in weather conditions. Therefore, in this study, to cope with the uncertainties involved in high-rise building projects, a probabilistic duration estimation model is developed in which both weather conditions and work cycle time for unit work are considered to predict structural work duration. According to the proposed estimation model, weather variables are divided into two types: weather conditions that result in nonworking days and weather conditions that result in work productivity rate (WPR) change. Obtained from actual previous data, the WPR is used with relevant nonworking day weather conditions to modify the actual number of working days per calendar days. Furthermore, on the basis of previous research results, the cycle time of the unit work area is assumed to follow the beta probability distribution function. Thus, the probabilistic duration model is valid for 95% probability. Finally, a case study is conducted that confirms the model can be practically used to estimate more reliable and applicable probabilistic durations of structural work. Indeed, this model can assist schedulers and site workers by alerting them, at the beginning of a project, to project uncertainties that specifically pertain to structural work and the weather. Thus, the proposed model can enable personnel to easily amend, and increase the reliability of, the construction schedule at hand.
ISSN
0733-9364
Language
English
URI
https://hdl.handle.net/10371/80911
DOI
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000105
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Architecture and Architectural Engineering (건축학과)Journal Papers (저널논문_건축학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse