Browse
S-Space
College of Veterinary Medicine (수의과대학)
Dept. of Veterinary Medicine (수의학과)
Journal Papers (저널논문_수의학과)
A new rat model for thrombus-induced ischemic pain (TIIP); development of bilateral mechanical allodynia
- Issue Date
- 2008-08-08
- Publisher
- Elsevier
- Citation
- Pain 2008;139:520-32
- Keywords
- Peripheral arterial disease ; Peripheral ischemia ; Mechanical allodynia ; Arterial thrombus ; Ferrous chloride
- Abstract
- Patients with peripheral arterial disease (PAD) commonly suffer from ischemic pain associated with severe thrombosis. However, the pathophysiology of peripheral ischemic pain is not fully understood due to the lack of an adequate animal model. In this study, we developed a new rodent model of thrombus-induced ischemic pain (TIIP) to investigate the neuronal mechanisms underlying ischemic pain. Ischemia was induced by application of 20% FeCl2 onto the surface of the femoral artery for 20 min. Induction of peripheral ischemia was confirmed by measurement of the concentration of Evans blue and by increases in the ischemia-specific markers, hypoxia-inducible factor-1 alpha and vascular endothelial growth factor in the ipsilateral plantar muscles. Ischemic pain, as indicated by the presence of mechanical allodynia, developed bilaterally and peaked at days 3–9 post-FeCl2 application and gradually decreased through day 31. Systemic heparin pretreatment dose dependently suppressed ischemic pain, suggesting that thrombosis-induced ischemia might be a key factor in TIIP. Intraplantar injection of BMS-182874, an ETA (endothelin-A) receptor antagonist, at day 3 selectively blocked ipsilateral pain, indicating that ETA receptor activity mediated TIIP. Spinal GFAP expression was significantly increased by FeCl2 and intrathecal injection of carbenoxolone (an astrocyte gap junction decoupler) at day 3 significantly reduced TIIP, suggesting that spinal astrocyte activation plays an important role. However, the anti-inflammatory agent, ibuprofen, did not affect TIIP. In conclusion, we have developed a novel animal model of TIIP that should be useful in investigating the pathophysiological mechanisms that underlie human peripheral ischemic pain.
- ISSN
- 0304-3959
- Language
- English
- Files in This Item: There are no files associated with this item.
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.