Publications

Detailed Information

Mutation of the Arabidopsis NAC016 Transcription Factor Delays Leaf Senescence

Cited 131 time in Web of Science Cited 141 time in Scopus
Authors

Kim, Ye-Sol; Sakuraba, Yasuhito; Han, Su-Hyun; Yoo, Soo-Cheul; Paek, Nam-Chon

Issue Date
2013-10
Publisher
Oxford University Press
Citation
Plant and Cell Physiology, Vol.54 No.10, pp.1660-1672
Abstract
The highly ordered process of senescence forms the final stage of leaf development; a large set of senescence-associated genes (SAGs) execute this orderly dismantling of the photosynthetic apparatus and remobilization of cellular components. A number of transcription factors (TFs) modulate SAG expression to promote or delay senescence. Here we show that NAC016, the previously uncharacterized senescence-associated NAM/ATAF1/2/CUC2 (senNAC) TF in Arabidopsis thaliana, promotes senescence. Leaves of nac016 mutants remained green under senescence-inducing conditions, and leaves of NAC016-overexpressing (NAC016-OX) plants senesced early. Under dark-induced senescence (DIS) conditions, nac016 mutants had low ion leakage, and retained the proper balance of photosystem proteins and normal grana thylakoid shape much longer than wild-type plants, suggesting that nac016 acts as a functional stay-green type senescence mutant. Under DIS conditions, SAGs (NYC1, PPH, SGR1/NYE1 and WRKY22), including senNACs (JUB1, NAP, ORE1, ORS1 and VNI2), were down-regulated in nac016 mutants and up-regulated in NAC016-OX plants. In addition to its role in senescence, NAC016 also affects abiotic stress. Under salt and oxidative stress conditions, NAC016 expression rapidly increased in developing leaves, possibly to promote senescence. Indeed, under the stress conditions, nac016 mutants stayed green and NAC016-OX plants senesced rapidly. To identify direct targets of the NAC016 TF in the regulation of leaf senescence, we conducted yeast one-hybrid assays, which strongly suggested that NAC016 binds to the promoters of NAP and ORS1. Based on these results, we propose that NAC016 regulatory mechanisms promoting leaf senescence exhibit cross-talk with the salt and oxidative stress-responsive signaling pathways.
ISSN
0032-0781
Language
English
URI
https://hdl.handle.net/10371/91398
DOI
https://doi.org/10.1093/pcp/pct113
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share