Publications

Detailed Information

Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis

Cited 331 time in Web of Science Cited 344 time in Scopus
Authors

Sakuraba, Yasuhito; Jeong, Jinkil; Kang, Min-Young; Kim, Junghyun; Paek, Nam-Chon; Choi, Giltsu

Issue Date
2014-08
Publisher
Nature Publishing Group
Citation
Nature Communications, Vol.5
Abstract
Plants initiate senescence to shed photosynthetically inefficient leaves. Light deprivation induces leaf senescence, which involves massive transcriptional reprogramming to dismantle cellular components and remobilize nutrients. In darkness, intermittent pulses of red light can inhibit senescence, likely via phytochromes. However, the precise molecular mechanisms transducing the signals from light perception to the inhibition of senescence remain elusive. Here, we show that in Arabidopsis, dark-induced senescence requires phytochrome-interacting transcription factors PIF4 and PIF5 (PIF4/PIF5). ELF3 and phytochrome B inhibit senescence by repressing PIF4/PIF5 at the transcriptional and post-translational levels, respectively. PIF4/PIF5 act in the signalling pathways of two senescence-promoting hormones, ethylene and abscisic acid, by directly activating expression of EIN3, ABI5 and EEL. In turn, PIF4, PIF5, EIN3, ABI5 and EEL directly activate the expression of the major senescence-promoting NAC transcription factor ORESARA1, thus forming multiple, coherent feed-forward loops. Our results reveal how classical light signalling connects to senescence in Arabidopsis.
ISSN
2041-1723
Language
English
URI
https://hdl.handle.net/10371/92913
DOI
https://doi.org/10.1038/ncomms5636
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share