Publications

Detailed Information

Multiscale mechanical analysis of self-healing polymer composites : 자가치료 고분자 복합재의 멀티스케일 기계적 해석

DC Field Value Language
dc.contributor.advisor조맹효-
dc.contributor.author신현성-
dc.date.accessioned2017-07-13T06:28:55Z-
dc.date.available2017-07-13T06:28:55Z-
dc.date.issued2017-02-
dc.identifier.other000000141285-
dc.identifier.urihttps://hdl.handle.net/10371/118589-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 기계항공공학부, 2017. 2. 조맹효.-
dc.description.abstract본 논문에서는 자가치료 고분자 복합재의 멀티스케일 기계적 해석을 수행하였다. 최근 혈액응고 과정을 모방한 자가치료 고분자 재료에 대한 연구가 활발히 이루어지고 있다. 70% 이상의 높은 치료 효율을 보이는 한편, 치료제를 포함하고 있는 구형 마이크로 캡슐의 함량이 증가함에 따라 점차 낮은 기계적 강도와 파괴 인성 특성을 보인다는 단점이 있다. 이러한 단점을 개선하기 위해, 캡슐 이외에 탄소나노튜브나 열소성 고분자 입자와 같은 충진제를 추가적으로 첨가한 자가치료 고분자 복합재의 개발이 이루어지고 있다. 많은 양의 설계 인자와 복잡한 역학 기작으로 인해, 실험 정보만으로 최적 설계를 수행하기에 어렵다는 문제가 있다. 이를 해결하기 위해서 본 연구에서는 설계에 명확한 방향을 제시할 수 있도록 이론에 기반한 해석 방법론을 제안하고, 이에 기반한 해석을 수행하였다.
자가치료 고분자 복합재료의 역학 문제는 균열 주변의 충진제로 인한 파괴 인성 향상 기작과 시편의 균열 치료 현상이 복합적으로 반영된 복잡한 문제이다. 본 논문의 연구 목표를 달성하기 위해 다음 두 가지 이론 기반 모델을 개발하였다. 우선, 마이크로 캡슐의 함량에 따른 자가치료 고분자 재료의 탄성 물성, 초기 파괴 인성, 치료 정도에 따른 파괴 인성을 예측할 수 있는 자가치료 고분자 재료의 기계적 거동 예측 모델을 개발하였다. 치료가 일어나는 동적 과정 하에 치료제와 기지재의 접착 특성 및 계면의 기계적 거동 특성을 모사하기 위해 가교 동역학 모델과 분자동역학 전산모사를 접목한 방법론을 제안하였다. 그 다음, 충진제의 일종인 나노입자나 열소성 입자의 첨가로 인해 향상된 파괴 인성을 예측할 수 있는 균열 주변의 멀티스케일 연속체 역학 모델을 개발하였다. 파괴 인성은 소산된 에너지와 밀접한 관련이 있다. 향상된 파괴 인성의 예측을 위해 소산된 에너지를 연속체 역학을 토대로 정량화 하였다. 제안된 두 가지 모델은 모두 실험 결과와 비교하여 높은 정확도를 보인다는 것을 확인하였다. 자가치료 고분자 재료의 기계적 거동 예측 모델을 토대로 치료 정도에 따른 균열 주변의 응력 분포를 예측하고, 이를 기반으로 치료 정도에 따른 파괴 인성 향상 정도를 예측할 수 있다. 이러한 일련의 과정을 통해 자가치료 고분자 복합재료의 기계적 해석을 위한 이론 기반 틀을 구축하고, 기계적 해석을 수행하였다.
-
dc.description.abstractIn this dissertation, a multiscale mechanical analysis of self-healing polymer composites has been conducted. Recently, the biomimetic self-healing polymeric systems have been focused due to their high healing efficiency. In spite of this attractive merit, these systems have critical limitations on the weakened effective stiffness and the fracture toughness as the weight fraction of microcapsules including the healing agent increases. To make up for this weakness, the self-healing polymer composites has been developed by addition of rigid nanoparticles or thermoplastic polymers into the self-healing polymers. However, the experiments-based optimal design of self-healing polymer composites cannot be achieved because there are too many design variables due to multi-compositions, and complex mechanical behaviors to be elucidated. Therefore, the multiscale mechanical analysis method for self-healing polymer composites is proposed for the efficient, reliable, and rational design.
The mechanics of self-healing polymer composites is very complex due to the combination of the toughening mechanisms and the macroscopic crack healing behaviors. To achieve the objective of this study, the following two theoretical models are developed. Firstly, "the multiscale model of self-healing polymers" is developed to predict the elastic properties, virgin fracture toughness, and healed fracture toughness of self-healing polymers as the weight fraction of microcapsules increases. To describe the adhesive behaviors between healing agents and matrix and mechanical behaviors of interface during the mechanical healing of macroscopic cracks, the curing kinetics model and the full atomistic molecular dynamics simulations are merged. Secondly, "the multiscale continuum model near the macroscopic cracks", which can predict the toughness enhancement due to the addition of rigid nanoparticles and thermoplastic polymers, has been developed. The fracture toughness is highly related to the dissipated energy. To obtain the toughness enhancement, the dissipated microscopic energy is quantified using the proposed multiscale models. Using the multiscale model of self-healing polymers, the stress fields near the macroscopic cracks can be obtained during the healing of macroscopic cracks. Based on these stress fields, the fracture toughness enhancement can be predicted during the healing of macroscopic cracks. Finally, the multiscale mechanical analysis method of self-healing polymer composites has been developed.
-
dc.description.tableofcontents1. INTRODUCTION 1
1.1. Multiscale Model of Self-Healing Polymers 1
1.2. Multiscale Analysis of Self-Healing Polymer Nanocomposites 2
1.3. Multiscale Analysis of Self-Healing Epoxy/Thermoplastic Blends 4
1.4. Outline of the Thesis 6

2. MULTISCALE MODEL OF SELF-HEALING POLYMERS 14
2.1. Model and Methods 15
2.1.1. Molecular modeling of bulk unit cells 15
2.1.1.1. Construction of crosslinked self-healing agents 15
2.1.1.2. Construction of crosslinked epoxy networks 16
2.1.1.3. Details of in-situ polymerization in molecular dynamics simulations 16
2.1.2. Curing kinetics model of self-healing agents 18
2.1.3. Characterization of mechanical behaviors of bulk unit cells 19
2.1.3.1. Elastic properties 19
2.1.3.2. Nonlinear stress-strain curves 20
2.1.3.3. Cohesive zone between healing agents and crosslinked epoxy 21
2.1.4. Characterization of mechanical behaviors of self-healing polymers 21
2.1.4.1. The homogenized elastic properties 21
2.1.4.2. The healed fracture toughness 22
2.2. Simulation Results and Discussions 23
2.2.1. Molecular dynamics simulation results of bulk healing agents 23
2.2.2. Predictive multiscale model of self-healing polymers 25
2.2.3. Time response of healing behaviors of self-healing polymers 26
2.3. Chapter Summary and Conclusions 27

3. MULTISCALE ANALYSIS OF SELF-HEALING POLYMER NANOCOMPOSITES 36
3.1. Multiscale Model to Predict Fatigue Crack Growth of Thermoset Polymer Nanocomposites 37
3.1.1. Description of the multiscale-multimechanism strategy 37
3.1.2. Quantification of additive strain energy release rate due to toughening mechanisms 39
3.1.2.1. Nanoparticulate debonding-induced plastic yield of nanovoids 39
3.1.2.2. Localized shear banding 41
3.1.3. The overall strain energy release rate of the thermoset polymer nanocomposites 42
3.1.4. The prediction of overall fracture toughness of thermoset polymer nanocomposites 42
3.1.5. The prediction of overall fatigue crack propagation behaviors of thermoset polymer nanocomposites 43
3.1.5.1. without consideration of crack closure effect 43
3.1.5.2. with consideration of crack closure effect 44
3.1.6. Model validation by comparison with experimental data 45
3.1.6.1. System details for model validation 45
3.1.6.2. Experimental validation without crack closure effect 45
3.1.6.3. Influences of crack closure effects 46
3.2. Multiscale Analysis of Self-Healing Polymer Nanocomposites 48
3.3. Chapter Summary and Conclusions 49

4. MULTISCALE ANALYSIS OF SELF-HEALING EPOXY/THERMOPLASTIC BLENDS 57
4.1. Multiscale Model of Epoxy/Thermoplastic Blends and Experimental Validations 57
4.1.1. Motivations 57
4.1.2. Thermoplastic particle yield-induced toughness enhancement 58
4.1.2.1. Description of the plastic energy from thermoplastic particles 58
4.1.2.2. Modeling of toughness enhancement induced by thermoplastic particle yield 62
4.1.3. Thermoplastic particle bridging-induced toughness enhancement 64
4.1.4. Molecular modeling and molecular dynamics simulation of bulk polyethersulfone 65
4.1.4.1. Molecular modeling of bulk polyethersulfone 65
4.1.4.2. Simulation of triaxial tensile loading and unloading in bulk polyethersulfone 66
4.1.5. Simulation results and discussion 66
4.1.5.1. Molecular dynamics simulation results of polyethersulfone 66
4.1.5.2. Experimental validation of the proposed multiscale model 67
4.1.5.3. Dependence of the toughness enhancement on mechanical properties of thermoplastic particles 68
4.2. Multiscale Analysis of Self-Healing Epoxy/Thermoplastic Blends 69
4.3. Chapter Summary and Conclusions 70

5. CONCLUSIONS 78

APPENDIX A. STATISTICAL MULTISCALE HOMOGENIZATION APPROACH FOR ANALYZING POLYMER NANOCOMPOSITES THAT INCLUDE MODEL INHERENT UNCERTAINTIES OF MOLECULAR DYNAMICS SIMULATIONS 81
A.1. Introduction 81
A.2. Molecular Modeling and Simulation Methodology 84
A.2.1. Preparation of unit cell 84
A.2.2. Production run for elastic properties 86
A.2.3. Statistical analysis of epoxy nanocomposites 86
A.3. Statistical Multiscale Bridging Method 87
A.3.1. Brief review of previous multiscale bridging methodologies 87
A.3.2. Numerical algorithm for statistical multiscale bridging 89
A.3.3. Statistical analysis that considers filler geometric uncertainties 90
A.3.3.1. RVE setup 90
A.3.3.2. Review of two-scale homogenization method of linear elastic composites 92
A.4. Simulation Results and Discussion 93
A.4.1. Cumulative average response of Youngs moduli 93
A.4.2. Mean and standard deviation of nanocomposite elastic properties 94
A.4.3. Uncertainties of interphase elastic properties 97
A.4.4. Propagation of inherent uncertainties of MD model 99
A.4.4.1. Verification of statistical three-phase multi-inclusion model through monoparticulate nanocomposites 99
A.4.4.2. Determination of RVE size and influence of geometric uncertainties 99
A.4.4.3. Discussion concerning the influence of inherent uncertainties of the MD model on the homogenized elastic properties of RVE 100
A.5. Summary of Appendix A 103

APPENDIX B. A MULTISCALE HOMOGENIZATION OF POLYMER NANOCOMPOSITES THAT INCLUDE AGGLOMERATED NANOPARTICLES 120
B.1. Introduction 120
B.2. Characterization of the Percolated Interphase Zone near the Agglomerated Nanofillers in Polymer Nanocomposites 122
B.2.1. Molecular modeling and simulation results 122
B.2.2. Multiscale homogenization modeling and verification 126
B.3. Homogenization Analysis of Polymeric Nanocomposites Containing Nanoparticulate Clusters 131
B.3.1. Models and methods 131
B.3.3.1. Preparation of finite element unit cells 131
B.3.3.2. Multiscale modeling of equivalent cluster 133
B.3.2. Homogenization results of polymeric nanocomposites unit cells including single clusters of nanoparticles 134
B.3.3. Homogenized elastic model of equivalent cluster and verification 136
B.4. Summary of Appendix B 137
REFERENCES 160
국문 요약 175
-
dc.formatapplication/pdf-
dc.format.extent4112346 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectSelf-healing polymers-
dc.subjectPolymer nanocomposites-
dc.subjectMultiscale analysis-
dc.subjectFatigue and fracture analysis-
dc.subjectFinite element analysis-
dc.subjectMolecular dynamics simulation-
dc.subject.ddc621-
dc.titleMultiscale mechanical analysis of self-healing polymer composites-
dc.title.alternative자가치료 고분자 복합재의 멀티스케일 기계적 해석-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pages176-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2017-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share