Publications

Detailed Information

Topological combinatorics in rainbow set problems : 무지개 집합 문제에서의 위상수학적 조합론

DC Field Value Language
dc.contributor.advisor국웅-
dc.contributor.author김진하-
dc.date.accessioned2019-10-21T03:39:17Z-
dc.date.available2019-10-21T03:39:17Z-
dc.date.issued2019-08-
dc.identifier.other000000156163-
dc.identifier.urihttps://hdl.handle.net/10371/162425-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000156163ko_KR
dc.description학위논문(박사)--서울대학교 대학원 :자연과학대학 수리과학부,2019. 8. 국웅.-
dc.description.abstract$\mathcal{F}=\{S_1,\ldots,S_m\}$를 $V$의 공집합이 아닌 부분 집합들의 모임이라 할 때, $\mathcal{F}$의 무지개 집합이란 공집합이 아니며 $S=\{s_{i_1},\ldots,s_{i_k}\} \subset V$와 같은 형태로 주어지는 것으로 다음 조건을 만족하는 것을 말한다. $1\leq i_1<\cdots
주어진 집합계가 특정 조건을 만족하는 무지개 집합을 가지기 위한 충분 조건을 찾는 문제는 홀의 결혼 정리에서 시작되어 최근까지도 조합수학에서 가장 대표적 문제 중 하나로 여겨져왔다. 이러한 방향으로의 문제를 무지개 집합 문제라고 부른다. 본 학위논문에서는 무지개 집합 문제와 관련하여 위상수학적 홀의 정리와 위상수학적 다색 헬리 정리를 소개하고, (하이퍼)그래프에서의 무지개 덮개와 무지개 독립 집합에 관한 결과들을 다루고자 한다.
-
dc.description.abstractLet $\mathcal{F}=\{S_1,\ldots,S_m\}$ be a finite family of non-empty subsets on the ground set $V$. A rainbow set of $\mathcal{F}$ is a non-empty set of the form $S=\{s_{i_1},\ldots,s_{i_k}\} \subset V$ with $1 \leq i_1 < \cdots < i_k \leq m$ such that $s_{i_j} \neq s_{i_{j'}}$ for every $j \neq j'$ and $s_{i_j} \in S_{i_j}$ for each $j \in [k]$. If $k = m$, namely if all $S_i$ is represented, then the rainbow set $S$ is called a full rainbow set of $\mathcal{F}$.

Originated from the celebrated Hall's marriage theorem, it has been one of the most fundamental questions in combinatorics and discrete mathematics to find sufficient conditions on set-systems to guarantee the existence of certain rainbow sets. We call problems in this direction the rainbow set problems. In this dissertation, we give an overview on two topological tools on rainbow set problems, Aharoni and Haxell's topological Hall theorem and Kalai and Meshulam's topological colorful Helly theorem, and present some results on and rainbow independent sets and rainbow covers in (hyper)graphs.
-
dc.description.tableofcontentsAbstract i
1 Introduction 1
1.1 Topological Hall theorem . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Topological colorful Helly theorem . . . . . . . . . . . . . . . . . 3
1.2.1 Collapsibility and Lerayness of simplicial complexes . . . 4
1.2.2 Nerve theorem and topological Helly theorem . . . . . . . 5
1.2.3 Topological colorful Helly theorem . . . . . . . . . . . . 6
1.3 Domination numbers and non-cover complexes of hypergraphs . . 7
1.3.1 Domination numbers of hypergraphs . . . . . . . . . . . . 10
1.3.2 Non-cover complexes of hypergraphs . . . . . . . . . . . . 10
1.4 Rainbow independent sets in graphs . . . . . . . . . . . . . . . . 12
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Collapsibility of non-cover complexes of graphs 16
2.1 The minimal exclusion sequences . . . . . . . . . . . . . . . . . . 16
2.2 Independent domination numbers and collapsibility numbers of
non-cover complexes of graphs . . . . . . . . . . . . . . . . . . . 21
3 Domination numbers and non-cover complexes of hypergraphs 24
3.1 Proof of Theorem 1.3.4 . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Edge-annihilation . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Non-cover complexes for hypergraphs . . . . . . . . . . . 27
3.2 Lerayness of non-cover complexes . . . . . . . . . . . . . . . . . 30
3.2.1 Total domination numbers . . . . . . . . . . . . . . . . . 30
3.2.2 Independent domination numbers . . . . . . . . . . . . . 33
3.2.3 Edgewise-domination numbers . . . . . . . . . . . . . . . 34
3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Independent domination numbers of hypergraphs . . . . . 35
3.3.2 Independence complexes of hypergraphs . . . . . . . . . . 36
3.3.3 General position complexes . . . . . . . . . . . . . . . . . 37
3.3.4 Rainbow covers of hypergraphs . . . . . . . . . . . . . . 39
3.3.5 Collapsibility of non-cover complexes of hypergraphs . . . 40
4 Rainbow independent sets 42
4.1 Graphs avoiding certain induced subgraphs . . . . . . . . . . . . 42
4.1.1 Claw-free graphs . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 $\{C_4,C_5, . . . ,C_s\}$-free graphs . . . . . . . . . . . . . . . . . 44
4.1.3 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.4 $K_r$-free graphs and $K^{−}_r$-free graphs . . . . . . . . . . . . . 50
4.2 $k$-colourable graphs . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Graphs with bounded degrees . . . . . . . . . . . . . . . . . . . . 55
4.3.1 The case $m < n$ . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 A topological approach . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Concluding remark . . . . . . . . . . . . . . . . . . . . . . . . . 67
Abstract (in Korean) 69
Acknowledgement (in Korean) 70
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectRainbow set-
dc.subjectindependence complex-
dc.subjectnon-cover complex-
dc.subjectdomination parameters-
dc.subjectindependent set-
dc.subject.ddc510-
dc.titleTopological combinatorics in rainbow set problems-
dc.title.alternative무지개 집합 문제에서의 위상수학적 조합론-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJinha Kim-
dc.contributor.department자연과학대학 수리과학부-
dc.description.degreeDoctor-
dc.date.awarded2019-08-
dc.contributor.major위상수학적 조합론-
dc.identifier.uciI804:11032-000000156163-
dc.identifier.holdings000000000040▲000000000041▲000000156163▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share