Publications

Detailed Information

Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development

Cited 22 time in Web of Science Cited 22 time in Scopus
Authors

Nagai, Hiroki; Sezaki, Maiko; Kakiguchi, Kisa; Nakaya, Yukiko; Lee, Hyung Chul; Ladher, Raj; Sasanami, Tomohiro; Han, Jae Yong; Yonemura, Shigenobu; Sheng, Guojun

Issue Date
2015
Publisher
Company of Biologists
Citation
Development, vol.142 no.7, pp. 1279-1286
Keywords
AmnioteCellularizationChickCleavageYolk syncytiumZygotic gene activation
Description
This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is properly attributed.
Abstract
Birds and mammals, phylogenetically close amniotes with similar post-gastrula development, exhibit little conservation in their post-fertilization cleavage patterns. Data from the mouse suggest that cellular morphogenesis and molecular signaling at the cleavage stage play important roles in lineage specification at later (blastula and gastrula) stages. Very little is known, however, about cleavage-stage chick embryos, owing to their poor accessibility. This period of chick development takes place before egg-laying and encompasses several fundamental processes of avian embryology, including zygotic gene activation (ZGA) and blastoderm cell-layer increase. We have carried out morphological and cellular analyses of cleavage-stage chick embryos covering the first half of pre-ovipositional development, from Eyal-Giladi and Kochav stage (EGK-) I to EGK-V. Scanning electron microscopy revealed remarkable subcellular details of blastomere cellularization and subgerminal cavity formation. Phosphorylated RNA polymerase II immunostaining showed that ZGA in the chick starts at early EGK-III during the 7th to 8th nuclear division cycle, comparable with the time reported for other yolk-rich vertebrates (e.g. zebrafish and Xenopus). The increase in the number of cell layers after EGK-III is not a direct consequence of oriented cell division. Finally, we present evidence that, as in the zebrafish embryo, a yolk syncytial layer is formed in the avian embryo after EGK-V. Our data suggest that several fundamental features of cleavage-stage development in birds resemble those in yolk-rich anamniote species, revealing conservation in vertebrate early development. Whether this conservation lends morphogenetic support to the anamniote-to-amniote transition in evolution or reflects developmental plasticity in convergent evolution awaits further investigation.
ISSN
0950-1991
Language
English
URI
https://hdl.handle.net/10371/100422
DOI
https://doi.org/10.1242/dev.118604
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share