Browse

The first generation of a BAC-based physical map of Brassica rapa

Cited 52 time in Web of Science Cited 51 time in Scopus
Authors
Mun, Jeong-Hwan; Kwon, Soo-Jin; Yang, Tae-Jin; Kim, Hye-Sun; Choi, Beom-Soon; Baek, Seunghoon; Kim, Jung Sun; Jin, Mina; Kim, Jin A; Lim, Myung-Ho; Lee, Soo In; Kim, Ho-Il; Kim, Hyungtae; Lim, Yong Pyo; Park, Beom-Seok
Issue Date
2008-06-12
Publisher
BioMed Central
Citation
BMC Genomics, 9(1):280
Description
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Abstract

Background
The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B. rapa genome is a fundamental tool for analysis of Brassica "A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences.


Results
A genome-wide physical map of the B. rapa genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC) clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing.


Conclusion
The map reported here is the first physical map for Brassica "A" genome based on the High Information Content Fingerprinting (HICF) technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between Brassica genomes. The current build of the B. rapa physical map is available at the B. rapa Genome Project website for the user community.
Language
English
URI
https://hdl.handle.net/10371/100460
DOI
https://doi.org/10.1186/1471-2164-9-280
Files in This Item:
Appears in Collections:
College of Agriculture and Life Sciences (농업생명과학대학)Dept. of Plant Science (식물생산과학부)Journal Papers (저널논문_식물생산과학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse