Publications

Detailed Information

Microtechnology-based organ systems and whole-body models for drug screening

Cited 20 time in Web of Science Cited 21 time in Scopus
Authors

Lee, Seung Hwan; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Park, Tai Hyun; Sung, Jong Hwan

Major
공과대학 화학생물공학부
Issue Date
2016-06
Publisher
Wiley - VCH Verlag GmbH & CO. KGaA
Citation
Biotechnology journal, Vol.11 No.6, pp.746-756
Abstract
After drug administration, the drugs are absorbed, distributed, metabolized, and excreted (ADME). Because ADME processes affect drug efficacy, various in vitro models have been developed based on the ADME processes. Although these models have been widely accepted as a tool for predicting the effects of drugs, the differences between in vivo and in vitro systems result in high attrition rates of drugs during the development process and remain a major limitation. Recent advances in microtechnology enable more accurate mimicking of the in vivo environment, where cellular behavior and physiological responses to drugs are more realistic; this has led to the development of novel in vitro systems, known as "organ-on-a-chip" systems. The development of organ-on-a-chip systems has progressed to include the reproduction of multiple organ interactions, which is an important step towards "body-on-a-chip" systems that will ultimately predict whole-body responses to drugs. In this review, we summarize the application of microtechnology for the development of in vitro systems that accurately mimic in vivo environments and reconstruct multiple organ models.
ISSN
1860-6768
Language
English
URI
https://hdl.handle.net/10371/116992
DOI
https://doi.org/10.1002/biot.201500551
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share