Publications
Detailed Information
α-Galactosidase delivery using 30Kc19-human serum albumin nanoparticles for effective treatment of Fabry disease : alpha-Galactosidase delivery using 30Kc19-human serum albumin nanoparticles for effective treatment of Fabry disease
Cited 25 time in
Web of Science
Cited 27 time in Scopus
- Authors
- Issue Date
- 2016-12
- Publisher
- Springer Verlag
- Citation
- Applied Microbiology and Biotechnology, Vol.100 No.24, pp.10395-10402
- Abstract
- Fabry disease is a genetic lysosomal storage disease caused by deficiency of alpha-galactosidase, the enzyme-degrading neutral glycosphingolipid that is transported to lysosome. Glycosphingolipid accumulation by this disease causes multi-organ dysfunction and premature death of the patient. Currently, enzyme replacement therapy (ERT) using recombinant alpha-galactosidase is the only treatment available for Fabry disease. To maximize the efficacy of treatment, enhancement of cellular delivery and enzyme stability is a challenge in ERT using alpha-galactosidase. In this study, protein nanoparticles using human serum albumin (HSA) and 30Kc19 protein, originating from silkworm, were used to enhance the delivery and intracellular alpha-galactosidase stability. 30Kc19-HSA nanoparticles loaded with the alpha-galactosidase were formed by desolvation method. 30Kc19-HSA nanoparticles had a uniform spherical shape and were well dispersed in cell culture media. 30Kc19-HSA nanoparticles had negligible toxicity to human cells. The nanoparticles exhibited enhanced cellular uptake and intracellular stability of delivered alpha-galactosidase in human foreskin fibroblast. Additionally, they showed enhanced globotriaosylceramide degradation in Fabry patients' fibroblasts. It is expected that 30Kc19-HSA protein nanoparticles could be used as an effective tool for efficient delivery and enhanced stability of drugs.
- ISSN
- 0175-7598
- Language
- English
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.