Publications

Detailed Information

Scattering analysis of guided waves in a plate using the T-matrix method : 평판 구조물 내의 탄성 유도초음파 산란현상에 대한 T-matrix 해법

DC Field Value Language
dc.contributor.advisor김윤영-
dc.contributor.author이흥선-
dc.date.accessioned2017-07-13T06:21:30Z-
dc.date.available2017-07-13T06:21:30Z-
dc.date.issued2015-08-
dc.identifier.other000000067173-
dc.identifier.urihttps://hdl.handle.net/10371/118483-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 기계항공공학부, 2015. 8. 김윤영.-
dc.description.abstractin wavefunction expansion method, wave fields are expanded in terms of the eigenfunctions for the governing wave equation. We aim to solve problems that have not been solved before by previously existing wavefunction expansion methods and thus adopt the transition matrix formalism that has been well known for bulk wave scattering problems. In this formalism, the relation between the coefficient vector of a scattered field and that of an incident field is given by the transition matrix.

For this reason, we first derive the Green's function by employing integral transform whose transform kernel is the eigenfunctions for Lamb and SH waves. Then, we develop the extended boundary condition method based on the null-field integral equation by using the derived Green's function. By using the extended boundary condition method, the T matrix for a single scatterer such as an elastic inclusion, a hole, a step thickness increase or reduction can be calculated. And the multiple scattering solution for these scatterers can be also obtained by using the single scatterer T matrices. We also derive the general properties of the T matrix which represent the reciprocity, energy conservation and time-reversal invariance.

Another development is a decomposition method particularly useful for solving scattering problems regarding arbitrarily shaped elastic inclusions. In this method, an elastic inclusion is decomposed into multiple small subscatterers and then a multiple scattering among subscatterers is calculated. By employing this approach, the restrictions imposed by the inherent problem of the extended boundary condition method can be relaxed and therefore elastic inclusions of various shapes and sizes can be covered.
-
dc.description.abstractThe main focus of this dissertation is on development of semi-theoretical methods for scattering analysis of guided waves in plates. The area of concern is problems related to flat transversely isotropic plates which include single or multi-layer isotropic and functionally graded plates. Specifically, we focus on the development of wavefunction expansion methods based on the three-dimensional elasticity-
dc.description.tableofcontentsAbstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background literatures . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Review of advances in the T matrix formalism . . . . . . . . 4
1.2.2 Analytic or semi-analytic methods for scattering problems in
elastic plates . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 2 Greens function for guided waves in a flat transversely isotropic
plate 13
2.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Derivation of the Greens function . . . . . . . . . . . . . . . . . . . 15
2.2.1 Greens function in the cylindrical coordinate system . . . . . 16
2.2.2 Greens function in Cartesian coordinate system . . . . . . . 31
2.3 Calculation of basis functions . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Analytic solutions for an isotropic plate . . . . . . . . . . . . 39
2.3.2 Numerical solutions by using the pseudo-spectral collocation
method for a transverse isotropic plate . . . . . . . . . . . . . 42
2.4 Modeling of guided wave actuators . . . . . . . . . . . . . . . . . . . 53
2.4.1 Axisymmetric line tractions . . . . . . . . . . . . . . . . . . 54
2.4.2 Straight line tractions . . . . . . . . . . . . . . . . . . . . . . 55
2.5 Numerical examples regarding functionally graded plates . . . . . . . 59
2.5.1 Material properties of functionally graded plates . . . . . . . 59
2.5.2 Through-thickness mode shapes of guided waves . . . . . . . 60
2.5.3 Beam patterns of waves generated by a line traction . . . . . . 63
2.6 Approximate plate theories . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.1 Kirchhoff plate theory . . . . . . . . . . . . . . . . . . . . . 65
2.6.2 Mindlin plate theory . . . . . . . . . . . . . . . . . . . . . . 66
2.6.3 Multipole expansion of flexural waves excited by arbitrary vertical
loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6.4 Comparison of the elasticity theory with plate theories . . . . 67
Chapter 3 Scattering analysis for guided waves in a flat transversely
isotropic plate by using the T-matrix method 70
3.1 T matrix calculation using the extended boundary condition method
for a single scatterer . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.1 The extended boundary condition method . . . . . . . . . . . 71
3.1.2 Derivation of the T matrix in case when a plate and a scatterer
are of the same thickness . . . . . . . . . . . . . . . . . . . . 73
3.1.3 Derivation of the T matrix in case when there is a thickness
difference between a plate and a scatterer . . . . . . . . . . . 77
3.1.4 Translation of fields generated by tractions to the coordinate
system for the scatterer . . . . . . . . . . . . . . . . . . . . . 81
3.1.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Multiple scattering analysis using the T-matrix method . . . . . . . . 86
3.2.1 Derivation of the T-matrix for multiple scatterers . . . . . . . 86
3.3 Properties of the T matrix . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.1 Orthogonality relations between basis functions in the cylindrical
coordinate system . . . . . . . . . . . . . . . . . . . . 91
3.3.2 Derivation for three properties of the T matrix . . . . . . . . . 100
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4 Decomposition method for elastic inclusions using multiple scattering
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.1 Overall description of the decomposition method . . . . . . . 107
3.4.2 Details related to implementation . . . . . . . . . . . . . . . 110
3.4.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . 114
Chapter 4 Conclusion and future works 127
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Chapter A Settings for the finite element method 131
초록 146
-
dc.formatapplication/pdf-
dc.format.extent5707853 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectElastic wave-
dc.subjectGuided wave-
dc.subjectPlate wave-
dc.subjectScattering analysis-
dc.subject.ddc621-
dc.titleScattering analysis of guided waves in a plate using the T-matrix method-
dc.title.alternative평판 구조물 내의 탄성 유도초음파 산란현상에 대한 T-matrix 해법-
dc.typeThesis-
dc.description.degreeDoctor-
dc.citation.pagesxiv,147-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2015-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share