Publications

Detailed Information

The transient state modeling and optimization of refrigerant charge amount for a household refrigerator : 가정용 냉장고의 동적 해석 모델을 통한 냉매 량 최적화

DC Field Value Language
dc.contributor.advisor김민수-
dc.contributor.author차상열-
dc.date.accessioned2017-07-14T03:38:28Z-
dc.date.available2017-07-14T03:38:28Z-
dc.date.issued2015-08-
dc.identifier.other000000067160-
dc.identifier.urihttps://hdl.handle.net/10371/123846-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2015. 8. 김민수.-
dc.description.abstractEnergy consumption regulation of household refrigerator has been
continuously strengthened worldwide. In Korea, energy efficiency rating
labeling was enforced from 1992. According to data from the Korea Energy
Management Corporation (KEMCO), energy consumption of refrigerators
has been reduced 59% over 15 years. Because of that, most refrigerator
manufacturers are seeking ways to improve thermal and electrical
performance of their products. In general, researching and development
method of refrigerator is trial and error procedure, which is time consuming
and costly. Hence, numerical analysis represent an essential tool to improve
time and cost. Therefore, a study for the numerical simulation of the
refrigerator has been conducted actively.
In this study, experiments were conducted together with the numerical
simulation to find the refrigerant charging amount of minimizing the power
consumption of household refrigerator, which has capillary tube with heat
exchanger. The experimental data were obtained in refrigerant charge range
from 80 g to 125 g at ambient temperature of 25℃. According to the
experimental data, the power consumption of household refrigerators has
been minimized at the refrigerant amount 104g. The numerical simulation
was computed under the same condition of the experiments by finite
difference method. The numerical data showed that power consumption was
minimized at refrigerant amount 98 g. Numerical simulation result was
compared with experimental data, and it was found that optimal refrigerant
charge amount was well predicted by the model.
-
dc.description.tableofcontentsContents
Abstract .................................................................................... i
Contents ................................................................................. iii
List of Tables ........................................................................... v
List of Figures ........................................................................ vi
Nomenclatures ..................................................................... viii
Chapter 1. Introduction ........................................................... 1
1.1 Background of the study ......................................................... 1
1.2 Literature review ..................................................................... 3
1.3 Objectives and scope of the study ........................................... 4
Chapter 2. Transient state modelling of the household
refrigerator ........................................................... 5
2.1 Introduction ............................................................................. 5
2.2 Specification of the studied household refrigerator ................ 6
2.3 Component modelling ............................................................. 6
2.3.1 Compressor modelling .......................................................... 6
2.3.2 Heat exchanger modelling .................................................. 10
2.3.3 Capillary tube modelling ..................................................... 13
2.3.4 Accumulator modelling ...................................................... 16
2.3.5 Cabinet modelling ............................................................... 16
2.4 Simulation procedure ............................................................ 18
2.5 Simulation results of the studied household refrigerator ...... 19
Chapter 3. Experimental study on the household refrigerator
system ................................................................ 25
3.1 Introduction ........................................................................... 25
3.2 Experimental setup and measurement................................... 25
3.2.1 Experimental setup .............................................................. 25
3.2.2 Measurement ....................................................................... 29
3.3 Test conditions ...................................................................... 32
3.4 Experimental results .............................................................. 34
Chapter 4. Conclusion ........................................................... 37
References ............................................................................. 39
Abstract(Korean) ................................................................... 40
-
dc.formatapplication/pdf-
dc.format.extent1336178 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectHousehold refrigerator-
dc.subjectOptimization of refrigerant charge amount-
dc.subjectTransient state modelling-
dc.subjectNon-adiabatic capillary tube-
dc.subject.ddc621-
dc.titleThe transient state modeling and optimization of refrigerant charge amount for a household refrigerator-
dc.title.alternative가정용 냉장고의 동적 해석 모델을 통한 냉매 량 최적화-
dc.typeThesis-
dc.description.degreeMaster-
dc.citation.pages40-
dc.contributor.affiliation공과대학 기계항공공학부-
dc.date.awarded2015-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share