Publications

Detailed Information

Effect of hydrothermal processing on ginseng extract

Cited 13 time in Web of Science Cited 14 time in Scopus
Authors

Ryu, Jebin; Lee, Hun Wook; Yoon, Junho; Seo, Bumjoon; Kwon, Dong Eui; Shin, Un-Moo; Choi, Kwang-joon; Lee, Youn-Woo

Issue Date
2017-10
Publisher
고려인삼학회
Citation
Journal of Ginseng Research, Vol.41 No.4, pp.572-577
Abstract
Background: Panax ginseng Meyer is cultivated because of its medicinal effects on the immune system, blood pressure, and cancer. Major ginsenosides in fresh ginseng are converted to minor ginsenosides by structural changes such as hydrolysis and dehydration. The transformed ginsenosides are generally more bioavailable and bioactive than the primary ginsenosides. Therefore, in this study, hydrothermal processing was applied to ginseng preparation to increase the yields of the transformed ginsenosides, such as 20(S)-Rg3, Rk1, and Rg5, and enhance antioxidant activities in an effective way. Methods: Ginseng extract was hydrothermally processed using batch reactors at 100-160 degrees C with differing reaction times. Quantitative analysis of the ginsenoside yields was performed using HPLC, and the antioxidant activity was qualitatively analyzed by evaluating 2,2'-azino-bis radical cation scavenging, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and phenolic antioxidants. Red ginseng and sun ginseng were prepared by conventional steaming as the control group. Results: Unlike steaming, the hydrothermal process was performed under homogeneous conditions. Chemical reaction, heat transfer, and mass transfer are generally more efficient in homogeneous reactions. Therefore, maximum yields for the hydrothermal process were 2.5-25 times higher than those for steaming, and the antioxidant activities showed 1.6-4-fold increases for the hydrothermal process. Moreover, the reaction time was decreased from 3 h to 15e35 min using hydrothermal processing. Conclusion: Therefore, hydrothermal processing offers significant improvements over the conventional steaming process. In particular, at temperatures over 140 degrees C, high yields of the transformed ginsenosides and increased antioxidant activities were obtained in tens of minutes.
ISSN
1226-8453
Language
English
URI
https://hdl.handle.net/10371/149199
DOI
https://doi.org/10.1016/j.jgr.2016.12.002
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share