Publications
Detailed Information
A dynamic game approach to distributionally robust safety specifications for stochastic systems
Cited 30 time in
Web of Science
Cited 32 time in Scopus
- Authors
- Issue Date
- 2018-08
- Publisher
- Pergamon Press Ltd.
- Citation
- Automatica, Vol.94, pp.94-101
- Abstract
- This paper presents a new safety specification method that is robust against errors in the probability distribution of disturbances. Our proposed distributionally robust safe policy maximizes the probability of a system remaining in a desired set for all times, subject to the worst possible disturbance distribution in an ambiguity set. We propose a dynamic game formulation of constructing such policies and identify conditions under which a non-randomized Markov policy is optimal. Based on this existence result, we develop a practical design approach to safety-oriented stochastic controllers with limited information about disturbance distributions. However, an associated Bellman equation involves infinite-dimensional minimax optimization problems since the disturbance distribution may have a continuous density. To alleviate computational issues, we propose a duality-based reformulation method that converts the infinite-dimensional minimax problem into a semi-infinite program that can be solved using existing convergent algorithms. We prove that there is no duality gap, and that this approach thus preserves optimality. The results of numerical tests confirm that the proposed method is robust against distributional errors in disturbances, while a standard stochastic safety verification tool is not. (C) 2018 Elsevier Ltd. All rights reserved.
- ISSN
- 0005-1098
- Language
- English
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.