Publications

Detailed Information

High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection

Cited 47 time in Web of Science Cited 53 time in Scopus
Authors

Ahn, Sae Ryun; An, Ji Hyun; Jang, Il Ha; Na, Wonjoo; Yang, Heehong; Cho, Kyung Hee; Lee, Sang Hun; Song, Hyun Seok; Jang, Jyongsik; Park, Tai Hyun

Issue Date
2018-10
Publisher
Pergamon Press Ltd.
Citation
Biosensors and Bioelectronics, Vol.117, pp.628-636
Abstract
Numerous efforts have been made to measure tastes for various purposes. However, most taste information is still obtained by human sensory evaluation. It is difficult to quantify a degree of taste or establish taste standard. Although artificial taste sensors called electronic tongues utilizing synthetic materials such as polymers, semi-conductors, or lipid membranes have been developed, they have limited performance due to their low sensitivity and specificity. Recently, bioelectronic tongues fabricated by integrating human taste receptors and nanomaterial-based sensor platforms have been found to have high performance for measuring tastes with human-like taste perception. However, human umami taste receptor is heterodimeric class C GPCR composed of human taste receptor type 1 member 1 (T1R1) and member 3 (T1R3). Such complicated structure makes it difficult to fabricate bioelectronic tongue. The objective of this study was to develop a protein-based bioelectronic tongue for detecting and discriminating umami taste with human-like performance using umami ligand binding domain called venus flytrap (VFT) domain originating from T1R1 instead of using the whole heterodimeric complex of receptors. Such T1R1 VFT was produced from Escherichia coil (E. coli) with purification and refolding process. It was then immobilized onto graphene-based FET. This bioelectronic tongue for umami taste (BTUT) was able to detect monosodium L-glutamate (MSG) with high sensitivity (ca. 1 nM) and specificity in real-time. The intensity of umami taste was enhanced by inosine monophosphate (IMP) that is very similar to the human taste system. In addition, BTUT allowed efficient reusable property and storage stability. It maintained 90% of normalized signal intensity for five weeks. To develop bioelectronic tongue, this approach using the ligand binding domain of human taste receptor rather than the whole heterodimeric GPCRS has advantages in mass production, reusability, and stability. It also has great potential for various industrial applications such as food, beverage, and pharmaceutical fields.
ISSN
0956-5663
Language
English
URI
https://hdl.handle.net/10371/150217
DOI
https://doi.org/10.1016/j.bios.2018.06.028
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share