Publications
Detailed Information
Characterizing Preferential Adsorption of Phosphate on Binary Sorbents of Goethite and Maghaemite using in situ ATR-FTIR and 2D Correlation Spectroscopy
Cited 22 time in
Web of Science
Cited 11 time in Scopus
- Authors
- Issue Date
- 2019-04
- Publisher
- Nature Publishing Group
- Citation
- Scientific Reports, Vol.9 No.1, p. 6130
- Abstract
- Recent developments in analytics using infrared spectroscopy have enabled us to identify the adsorption mechanism at interfaces, but such methods are applicable only for simple systems. In this study, the preferential adsorption of phosphate on binary goethite and maghaemite was investigated. As a result, monodentate and bidentate complexes were the major complexes on goethite and maghaemite, respectively. A shrinking effect in goethite and a swelling effect in maghaemite were identified, and environmental perturbations caused a significant decrease in the integrated absorbance of phosphate complexes on maghaemite, while no effect was observed on goethite, which implies that different adsorption mechanisms were involved. Based on the results, a bridging complex was proposed, and the swelling effect is explained by the negatively charged maghaemite surface resulting from the bidentate complex. The isolation of phosphate by the shrinking effect explains the low phosphate bioavailability in the soil environment, while the colloidal properties of the bidentate complex on maghaemite are the reason for colloidal mobilization. To the best of our knowledge, this study not only addresses the shrinking and swelling properties of iron (hydr)oxide nanoparticles but also demonstrates preferential adsorption on binary sorbents using in situ ATR-FTIR for the first time.
- ISSN
- 2045-2322
- Language
- ENG
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.