Publications
Detailed Information
Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System
Cited 152 time in
Web of Science
Cited 161 time in Scopus
- Authors
- Issue Date
- 2015-12
- Publisher
- John Wiley & Sons Ltd.
- Citation
- Advanced Functional Materials, Vol.25 No.46, pp.7109-7118
- Abstract
- Graphene has been highlighted as a platform material in transparent electronics and optoelectronics, including flexible and stretchable ones, due to its unique properties such as optical transparency, mechanical softness, ultrathin thickness, and high carrier mobility. Despite huge research efforts for graphene-based electronic/optoelectronic devices, there are remaining challenges in terms of their seamless integration, such as the high-quality contact formation, precise alignment of micrometer-scale patterns, and control of interfacial-adhesion/local-resistance. Here, a thermally controlled transfer printing technique that allows multiple patterned-graphene transfers at desired locations is presented. Using the thermal-expansion mismatch between the viscoelastic sacrificial layer and the elastic stamp, a "heating and cooling" process precisely positions patterned graphene layers on various substrates, including graphene prepatterns, hydrophilic surfaces, and super-hydrophobic surfaces, with high transfer yields. A detailed theoretical analysis of underlying physics/mechanics of this approach is also described. The proposed transfer printing successfully integrates graphene-based stretchable sensors, actuators, light-emitting diodes, and other electronics in one platform, paving the way toward transparent and wearable multifunctional electronic systems.
- ISSN
- 1616-301X
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.