Publications

Detailed Information

3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities

DC Field Value Language
dc.contributor.authorChoi, Bong Gill-
dc.contributor.authorYang, MinHo-
dc.contributor.authorHong, Won Hi-
dc.contributor.authorChoi, Jang Wook-
dc.contributor.authorHuh, Yun Suk-
dc.date.accessioned2020-03-16T10:57:40Z-
dc.date.available2020-03-16T10:57:40Z-
dc.date.created2018-07-02-
dc.date.issued2012-05-
dc.identifier.citationACS Nano, Vol.6 No.5, pp.4020-4028-
dc.identifier.issn1936-0851-
dc.identifier.other38506-
dc.identifier.urihttps://hdl.handle.net/10371/164551-
dc.description.abstractIn order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient Ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO2 was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO2/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current Increase to 35 A/g. Moreover, when the MnO2/e-CMG composite electrode was asymmetrically assembled with an e-CMG electrode, the assembled full cell shows remarkable cell performance: energy density of 44 Wh/kg, power density of 25 kW/kg, and excellent cycle life.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.title3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1021/nn3003345-
dc.citation.journaltitleACS Nano-
dc.identifier.wosid000304231700041-
dc.identifier.scopusid2-s2.0-84862894222-
dc.citation.endpage4028-
dc.citation.number5-
dc.citation.startpage4020-
dc.citation.volume6-
dc.identifier.sci000304231700041-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusPERFORMANCE ELECTROCHEMICAL CAPACITORS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusULTRACAPACITORS-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusMNO2-
dc.subject.keywordAuthorporous material-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorcomposites-
dc.subject.keywordAuthorion transport-
dc.subject.keywordAuthorenergy storage-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share