Publications
Detailed Information
A "Sticky" mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries
Cited 86 time in
Web of Science
Cited 119 time in Scopus
- Authors
- Issue Date
- 2018-06-27
- Citation
- Advanced Materials, Vol.30 No.26, p. 1707594
- Abstract
- New binder concepts have lately demonstrated improvements in the cycle life of high-capacity silicon anodes. Those binder designs adopt adhesive functional groups to enhance affinity with silicon particles and 3D network conformation to secure electrode integrity. However, homogeneous distribution of silicon particles in the presence of a substantial volumetric content of carbonaceous components (i.e., conductive agent, graphite, etc.) is still difficult to achieve while the binder maintains its desired 3D network. Inspired by mucin, the amphiphilic macromolecular lubricant, secreted on the hydrophobic surface of gastrointestine to interface aqueous serous fluid, here, a renatured DNA-alginate amphiphilic binder for silicon and silicon-graphite blended electrodes is reported. Mimicking mucin's structure comprised of a hydrophobic protein backbone and hydrophilic oligosaccharide branches, the renatured DNA-alginate binder offers amphiphilicity from both components, along with a 3D fractal network structure. The DNA-alginate binder facilitates homogeneous distribution of electrode components in the electrode as well as its enhanced adhesion onto a current collector, leading to improved cyclability in both silicon and silicon-graphite blended electrodes.
- ISSN
- 0935-9648
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.