Publications

Detailed Information

One-Dimensional Carbon-Sulfur Composite Fibers for Na-S Rechargeable Batteries Operating at Room Temperature

Cited 362 time in Web of Science Cited 378 time in Scopus
Authors

Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong; Kim, Byung Gon; Choi, Jang Wook

Issue Date
2013-09
Publisher
American Chemical Society
Citation
Nano Letters, Vol.13 No.9, pp.4532-4538
Abstract
Na-S batteries are one type of molten salt battery and have been used to support stationary energy storage systems for several decades. Despite their successful applications based on long cycle lives and low cost of raw materials, Na-S cells require high temperatures above 300 degrees C for their operations, limiting their propagation into a wide range of applications. Herein, we demonstrate that Na-S cells with solid state active materials can perform well even at room temperature when sulfur-containing carbon composites generated from a simple thermal reaction were used as sulfur positive electrodes. Furthermore, this structure turned out to be robust during repeated (de)sodiation for similar to 500 cycles and enabled extraordinarily high rate performance when one-dimensional morphology is adopted using scalable electrospinning processes. The current study suggests that solid-state Na-S cells with appropriate atomic configurations of sulfur active materials could cover diverse battery applications where cost of raw materials is critical.
ISSN
1530-6984
URI
https://hdl.handle.net/10371/164602
DOI
https://doi.org/10.1021/nl402513x
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share