Publications

Detailed Information

Ultrastable graphene-encapsulated 3 nm nanoparticles by in situ chemical vapor deposition

DC Field Value Language
dc.contributor.authorChoi, Dong Sung-
dc.contributor.authorKim, Chanhoon-
dc.contributor.authorLim, Joonwon-
dc.contributor.authorCho, Su-Ho-
dc.contributor.authorLee, Gil Yong-
dc.contributor.authorLee, Ho Jin-
dc.contributor.authorChoi, Jang Wook-
dc.contributor.authorKim, Heeyeon-
dc.contributor.authorKim, Il-Doo-
dc.contributor.authorKim, Sang Ouk-
dc.date.accessioned2020-03-16T11:08:01Z-
dc.date.available2020-03-16T11:08:01Z-
dc.date.created2019-07-26-
dc.date.issued2018-12-
dc.identifier.citationAdvanced Materials, Vol.30 No.51, p. 1805023-
dc.identifier.issn0935-9648-
dc.identifier.other79853-
dc.identifier.urihttps://hdl.handle.net/10371/164631-
dc.description.abstractNanoscale materials offer enormous opportunities for catalysis, sensing, energy storage, and so on, along with their superior surface activity and extremely large surface area. Unfortunately, their strong reactivity causes severe degradation and oxidation even under ambient conditions and thereby deteriorates long-term usability. Here superlative stable graphene-encapsulated nanoparticles with a narrow diameter distribution prepared via in situ chemical vapor deposition (CVD) are presented. The judiciously designed CVD protocol generates 3 nm size metal and ceramic nanoparticles intimately encapsulated by few-layer graphene shells. Significantly, graphene-encapsulated Co3O4 nanoparticles exhibit outstanding structural and functional integrity over 2000 cycles of lithiation/delithiation for Li-ion battery anode application, accompanied by 200% reversible volume change of the inner core particles. The insight obtained from this approach offers guidance for utilizing high-capacity electrode materials for Li-ion batteries. Furthermore, this in situ CVD synthesis is compatible with many different metal precursors and postsynthetic treatments, including oxidation, phosphidation, and sulfidation, and thus offers a versatile platform for reliable high-performance catalysis and energy storage/conversion with nanomaterials.-
dc.language영어-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleUltrastable graphene-encapsulated 3 nm nanoparticles by in situ chemical vapor deposition-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1002/adma.201805023-
dc.citation.journaltitleAdvanced Materials-
dc.identifier.wosid000453926000017-
dc.identifier.scopusid2-s2.0-85054911780-
dc.citation.number51-
dc.citation.startpage1805023-
dc.citation.volume30-
dc.identifier.sci000453926000017-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusION BATTERY ANODE-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusMETAL NANOPARTICLES-
dc.subject.keywordPlusCO3O4 NANOPARTICLES-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorCo3O4 anode-
dc.subject.keywordAuthorencapsulation-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorin situ CVD-
dc.subject.keywordAuthorlithium-ion batteries-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share