Publications

Detailed Information

Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries

DC Field Value Language
dc.contributor.authorJung, Dae Soo-
dc.contributor.authorHwang, Tae Hoon-
dc.contributor.authorPark, Seung Bin-
dc.contributor.authorChoi, Jang Wook-
dc.date.accessioned2020-03-16T11:08:45Z-
dc.date.available2020-03-16T11:08:45Z-
dc.date.created2018-07-02-
dc.date.issued2013-05-
dc.identifier.citationNano Letters, Vol.13 No.5, pp.2092-2097-
dc.identifier.issn1530-6984-
dc.identifier.other38529-
dc.identifier.urihttps://hdl.handle.net/10371/164652-
dc.description.abstractNanostructured silicon electrodes have shown great potential as lithium ion battery anodes because they can address capacity fading mechanisms originating from large volume changes of silicon alloys while delivering extraordinarily large gravimetric capacities. Nonetheless, synthesis of well-defined silicon nanostructures in an industrially adaptable scale still remains as a challenge. Herein, we adopt an industrially established spray drying process to enable scalable synthesis of silicon-carbon composite particles in which silicon nanoparticles are embedded in porous carbon particles. The void space existing in the porous carbon accommodates the volume expansion of silicon and thus addresses the chronic fading mechanisms of silicon anodes. The composite electrodes exhibit excellent electrochemical performance, such as 1956 mAh/g at 0.05C rate and 91% capacity retention after 150 cycles. Moreover, the spray drying method requires only 2 s for the formation of each particle and allows a production capability of similar to 10 g/h even with an ultrasonic-based lab-scale equipment. This investigation suggests that established industrial processes could be adaptable to the production of battery active materials that require sophisticated nanostructures as well as large quantity syntheses.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleSpray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1021/nl400437f-
dc.citation.journaltitleNano Letters-
dc.identifier.wosid000318892400035-
dc.identifier.scopusid2-s2.0-84877257015-
dc.citation.endpage2097-
dc.citation.number5-
dc.citation.startpage2092-
dc.citation.volume13-
dc.identifier.sci000318892400035-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusPHOSPHOR PARTICLES-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusPYROLYSIS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusCORE-
dc.subject.keywordPlusSIZE-
dc.subject.keywordAuthorLithium ion battery-
dc.subject.keywordAuthoranode-
dc.subject.keywordAuthorsilicon nanoparticle-
dc.subject.keywordAuthorporous carbon-
dc.subject.keywordAuthorspray drying-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Carbon nanotube, Graphene, Lithium-ion battery, Lithium-sulfur battery, Silicon anode

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share