Publications
Detailed Information
Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries
Cited 43 time in
Web of Science
Cited 42 time in Scopus
- Authors
- Issue Date
- 2017-12
- Publisher
- American Chemical Society
- Citation
- Nano Letters, Vol.17 No.12, pp.7869-7877
- Abstract
- Battery performance, such as the rate capability and cycle stability Of lithium transition metal oxides, is strongly correlated with the surface properties of active particles. For lithium-rich layered oxides, transition metal segregation in the initial state and migration upon cycling leads to a significant structural rearrangement, which eventually degrades the electrode performance. Here, we show that a fine-tuning of surface chemistry on the particular crystal facet can facilitate ionic diffusion and thus improve the rate capability dramatically, delivering a specific capacity of similar to 110 mAh g(-1) at 30C. This high rate performance is realized by creating a nanoscale zirconium-abundant rock-salt-like surface phase epitaxially grown on the layered bulk. This surface layer is spontaneously formed on the Li+ diffusive crystallographic facets during the synthesis and is also durable upon electrochemical cycling. As a result, Li-ions can move rapidly through this nanoscale surface layer over hundreds of cycles. This study provides a promising new strategy for designing and preparing a high-performance lithium-rich layered oxide cathode material.
- ISSN
- 1530-6984
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.