Browse

Anomalous Stretchable Conductivity Using an Engineered Tricot Weave

Cited 26 time in Web of Science Cited 26 time in Scopus
Authors
Lee, Yong-Hee; Kim, Yoonseob; Lee, Tae-Ik; Lee, Inhwa; Shin, Jaeho; Lee, Hyun Soo; Kim, Taek-Soo; Choi, Jang Wook
Issue Date
2015-12
Citation
ACS Nano, Vol.9 No.12, pp.12214-12223
Keywords
stretchable conductivitywearable electronicstextile engineeringmodified 3D percolation theorytricot weave
Abstract
Robust electric conduction under stretching motions is a key element in upcoming wearable electronic devices but is fundamentally very difficult to achieve because percolation pathways in conductive media are subject to collapse upon stretching. Here, we report that this fundamental challenge can be overcome by using a parameter uniquely available in textiles, namely a weaving structure. A textile structure alternately interwoven with inelastic and elastic yarns, achieved via a tricot weave, possesses excellent elasticity (strain up to 200%) in diagonal directions. When this textile is coated with conductive nanomaterials, proper textile engineering allows the textile to obtain an unprecedented 7-fold conductivity increase, with conductivity reaching 33,0005 cm(-1), even at 130% strain, due to enhanced interyarn contacts. The observed stretching conductivity can be described well using a modified 3D percolation theory that reflects the weaving effect and is also utilized for stretchable electronic interconnects and supercapacitors with high performance.
ISSN
1936-0851
URI
https://hdl.handle.net/10371/164669
DOI
https://doi.org/10.1021/acsnano.5b05465
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse