Publications

Detailed Information

Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities

DC Field Value Language
dc.contributor.authorSon, In Hyuk-
dc.contributor.authorPark, Jong Hwan-
dc.contributor.authorPark, Seongyong-
dc.contributor.authorPark, Kwangjin-
dc.contributor.authorHan, Sangil-
dc.contributor.authorShin, Jaeho-
dc.contributor.authorDoo, Seok-Gwang-
dc.contributor.authorHwang, Yunil-
dc.contributor.authorChang, Hyuk-
dc.contributor.authorChoi, Jang Wook-
dc.date.accessioned2020-03-16T11:09:25Z-
dc.date.available2020-03-16T11:09:25Z-
dc.date.created2018-06-29-
dc.date.issued2017-11-
dc.identifier.citationNature Communications, Vol.8, p. 1561-
dc.identifier.issn2041-1723-
dc.identifier.other38417-
dc.identifier.urihttps://hdl.handle.net/10371/164671-
dc.description.abstractImproving one property without sacrificing others is challenging for lithium-ion batteries due to the trade-off nature among key parameters. Here we report a chemical vapor deposition process to grow a graphene-silica assembly, called a graphene ball. Its hierarchical three-dimensional structure with the silicon oxide nanoparticle center allows even 1 wt% graphene ball to be uniformly coated onto a nickel-rich layered cathode via scalable Nobilta milling. The graphene-ball coating improves cycle life and fast charging capability by suppressing detrimental side reactions and providing efficient conductive pathways. The graphene ball itself also serves as an anode material with a high specific capacity of 716.2 mAh g(-1). A full-cell incorporating graphene balls increases the volumetric energy density by 27.6% compared to a control cell without graphene balls, showing the possibility of achieving 800 Wh L-1 in a commercial cell setting, along with a high cyclability of 78.6% capacity retention after 500 cycles at 5C and 60 degrees C.-
dc.language영어-
dc.publisherNature Publishing Group-
dc.titleGraphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1038/s41467-017-01823-7-
dc.citation.journaltitleNature Communications-
dc.identifier.wosid000415323700008-
dc.identifier.scopusid2-s2.0-85034589746-
dc.citation.startpage1561-
dc.citation.volume8-
dc.identifier.sci000415323700008-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusCHEMICAL-VAPOR-DEPOSITION-
dc.subject.keywordPlusWALLED CARBON NANOTUBES-
dc.subject.keywordPlusLI-ION BATTERIES-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusGRAPHITE ANODES-
dc.subject.keywordPlusRATE CAPABILITY-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusOXYGEN-
Appears in Collections:
Files in This Item:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share