Publications
Detailed Information
Critical role of elemental copper for enhancing conversion kinetics of sulphur cathodes in rechargeable magnesium batteries
Cited 24 time in
Web of Science
Cited 25 time in Scopus
- Authors
- Issue Date
- 2019-08
- Publisher
- Elsevier BV
- Citation
- Applied Surface Science, Vol.484, pp.933-940
- Abstract
- Despite recent remarkable progress associated with the electrolyte, understanding of the reaction mechanism of magnesium-sulphur batteries is not yet mature. In particular, the lethargic redox reactions involved in the electrochemical conversion of sulphur and MgS in the cathode need to be overcome. Here, we unveil the reaction mechanism involving copper (Cu) metal, a common current collector for electrodes in rechargeable batteries. Specifically, Cu can undergo chemical reactions with polysulphides produced from the reaction of sulphur or MgS with Mg2+. Throughout the conversion reaction, these Cu-polysulphide reactions play a critical role to improve reaction kinetics markedly. The present investigation opens new avenues to the emerging Mg-S battery technology, that is, the incorporation of various metals that can speed up the conversion reaction between sulphur and Mg.
- ISSN
- 0169-4332
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.