Publications

Detailed Information

5L-Scale Magnesio-Milling Reduction of Nanostructured SiO2 for High Capacity Silicon Anodes in Lithium-Ion Batteries

DC Field Value Language
dc.contributor.authorCho, Won Chul-
dc.contributor.authorKim, Hye Jin-
dc.contributor.authorLee, Hae In-
dc.contributor.authorSeo, Myung Won-
dc.contributor.authorRa, Ho Won-
dc.contributor.authorYoon, Sang Jun-
dc.contributor.authorMun, Tae Young-
dc.contributor.authorKim, Yong Ku-
dc.contributor.authorKim, Jae Ho-
dc.contributor.authorKim, Bo Hwa-
dc.contributor.authorKook, Jin Woo-
dc.contributor.authorYoo, Chung-Yul-
dc.contributor.authorLee, Jae Goo-
dc.contributor.authorChoi, Jang Wook-
dc.date.accessioned2020-03-16T11:09:39Z-
dc.date.available2020-03-16T11:09:39Z-
dc.date.created2018-07-03-
dc.date.issued2016-11-
dc.identifier.citationNano Letters, Vol.16 No.11, pp.7261-7269-
dc.identifier.issn1530-6984-
dc.identifier.other38633-
dc.identifier.urihttps://hdl.handle.net/10371/164677-
dc.description.abstractNanostructured silicon (Si) is useful in many applications and has typically been synthesized by bottom-up colloid-based solution processes or top-down gas phase reactions at high temperatures. These methods, however, suffer from toxic precursors, low yields, and impractical processing conditions (i.e., high pressure). The magnesiothermic reduction of silicon oxide (SiO2) has also been introduced as an alternative method. Here, we demonstrate the reduction of SiO2 by a simple milling process using a lab scale planetary-ball mill and industry-scale attrition-mill. Moreover, an ignition point where the reduction begins was consistently observed for the milling processes, which could be used to accurately monitor and control the reaction. The complete conversion of rice husk SiO2 to high purity Si was demonstrated, taking advantage of the rice husk's uniform nanoporosity and global availability, using a 5L-scale attrition-mill. The resulting porous Si showed excellent performance as a Li-ion battery anode, retaining 82.8% of the initial capacity of 1466 mAh g(-1) after 200 cycles.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.title5L-Scale Magnesio-Milling Reduction of Nanostructured SiO2 for High Capacity Silicon Anodes in Lithium-Ion Batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1021/acs.nanolett.6b03762-
dc.citation.journaltitleNano Letters-
dc.identifier.wosid000387625000080-
dc.identifier.scopusid2-s2.0-84994537686-
dc.citation.endpage7269-
dc.citation.number11-
dc.citation.startpage7261-
dc.citation.volume16-
dc.identifier.sci000387625000080-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusRICE HUSKS-
dc.subject.keywordPlusRECHARGEABLE BATTERIES-
dc.subject.keywordPlusNEGATIVE ELECTRODES-
dc.subject.keywordPlusPHASE SYNTHESIS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusBINDER-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusNANOCLUSTERS-
dc.subject.keywordPlusPOWDERS-
dc.subject.keywordAuthorattrition mill-
dc.subject.keywordAuthorignition time-
dc.subject.keywordAuthorlithium-ion battery-
dc.subject.keywordAuthormagnesio-milling reduction-
dc.subject.keywordAuthorsilicon anode-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share