Browse
S-Space
College of Engineering/Engineering Practice School (공과대학/대학원)
Dept. of Chemical and Biological Engineering (화학생물공학부)
Journal Papers (저널논문_화학생물공학부)
Stabilized Octahedral Frameworks in Layered Double Hydroxides by Solid-Solution Mixing of Transition Metals
- Issue Date
- 2017-02
- Publisher
- John Wiley & Sons Ltd.
- Citation
- Advanced Functional Materials, Vol.27 No.7, p. 1605225
- Abstract
- Pseudocapacitors have received considerable attention, as they possess advantages of both rechargeable batteries and electric double layer capacitors. Among various active materials for pseudocapacitors, alpha-layered double hydroxides (alpha-TM(OH)(2), TM = transition metal) are promising due to their high specific capacities. Yet, irreversible alpha-to-beta phase transitions of alpha-TM(OH)(2) hinder their long-term cyclability, particularly when the TM is nickel. Here, it is reported that binary TM ion mixing can overcome the limited cycle lives of alpha-TM(OH)(2) by stabilizing the octahedral frameworks of alpha-TM(OH)(2). In particular, an alpha-TM(OH)(2) with equal amounts of nickel and cobalt exhibits long-term capacity retention (89.0% after 2000 cycles) and specific capacity (206 mA h g(-1)), which are better than those of individual TM counterparts. A series of analyses reveals that the improved performances originate from the synergistic effects between the TM ions; the preferred trivalent state of cobalt ions stabilizes the octahedral framework by accommodating the detrimental Jahn-Teller distortion of Ni3+. The stabilized framework also widens the redox swing range of the nickel up to 4+, thus, increasing the specific capacity of the corresponding alpha-TM(OH)(2). This study indicates that proper mixing of TMs is a prolific approach in enhancing the vital properties of alpha-TM(OH)(2), a promising family of pseudocapacitor materials.
- ISSN
- 1616-301X
- Files in This Item: There are no files associated with this item.
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.