Mussel-inspired polydopamine coating for enhanced thermal stability and rate performance of graphite anodes in Li-ion batteries

Cited 37 time in Web of Science Cited 39 time in Scopus

Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

Issue Date
American Chemical Society
ACS Applied Materials and Interfaces, Vol.8 No.22, pp.13973-13981
Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Le ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The manometer-thick PD coating layer allows the formation of an SEI layer on the, coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes'. PD-coated graphite exhibits far better performances in cycling test at 60 degrees C and storage test at 90 degrees C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li+ ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.