Publications

Detailed Information

Computational analysis of pressure-dependent optimal pore size for CO2 capture with graphitic surfaces

DC Field Value Language
dc.contributor.authorKwac, Kijeong-
dc.contributor.authorLee, Ji Hoon-
dc.contributor.authorChoi, Jang Wook-
dc.contributor.authorJung, Yousung-
dc.date.accessioned2020-03-16T11:11:22Z-
dc.date.available2020-03-16T11:11:22Z-
dc.date.created2018-07-03-
dc.date.issued2016-02-
dc.identifier.citationJournal of Physical Chemistry C, Vol.120 No.7, pp.3978-3985-
dc.identifier.issn1932-7447-
dc.identifier.other38620-
dc.identifier.urihttps://hdl.handle.net/10371/164713-
dc.description.abstractThere are a growing number of reports suggesting that the specific surface area in graphitic materials is not a critical parameter to determine the CO, capture capacity, but rather the pore size and its geometry are more relevant, yet a detailed theoretical and quantitative understanding that could facilitate further developments for the pore size effects is presently lacking. Using the thermodynamic continuum model combined with electronic structure calculations, we identify the critical size of pores in graphitic materials for enhanced carbon dioxide (CO2) uptake as well as its selectivity relative to N-2. We find that there exists a value of pore size which is most optimal in the CO, capture capacity as well as CO2/N-2 selectivity at a given pressure and temperature, supporting the previous experimental observations regarding critical parameters determining the CO2 adsorption capacity of porous carbon materials. The calculated results emphasize the importance of graphitic pore size from 8 to10 angstrom in CO, capture and selectivity against N-2.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleComputational analysis of pressure-dependent optimal pore size for CO2 capture with graphitic surfaces-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1021/acs.jpcc.5b12404-
dc.citation.journaltitleJournal of Physical Chemistry C-
dc.identifier.wosid000371104400045-
dc.identifier.scopusid2-s2.0-84959420868-
dc.citation.endpage3985-
dc.citation.number7-
dc.citation.startpage3978-
dc.citation.volume120-
dc.identifier.sci000371104400045-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORKS-
dc.subject.keywordPlusAUGMENTED-WAVE METHOD-
dc.subject.keywordPlusEQUATION-OF-STATE-
dc.subject.keywordPlusACTIVATED CARBON-
dc.subject.keywordPlusFLUE-GAS-
dc.subject.keywordPlusSWING ADSORPTION-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusDIOXIDE-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusSORPTION-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share