Publications

Detailed Information

Functional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles

DC Field Value Language
dc.contributor.authorChung, Dong Young-
dc.contributor.authorShin, Heejong-
dc.contributor.authorYoo, Ji Mun-
dc.contributor.authorLee, Kug-Seung-
dc.contributor.authorLee, Nam-Suk-
dc.contributor.authorKang, Kisuk-
dc.contributor.authorSung, Yung-Eun-
dc.date.accessioned2020-04-25T07:58:55Z-
dc.date.available2020-04-25T07:58:55Z-
dc.date.created2018-07-11-
dc.date.created2018-07-11-
dc.date.issued2016-12-
dc.identifier.citationJournal of Power Sources, Vol.334, pp.52-57-
dc.identifier.issn0378-7753-
dc.identifier.other39918-
dc.identifier.urihttps://hdl.handle.net/10371/165047-
dc.description.abstractA promising strategy for achieving enhanced catalytic activity involves the use of nanoscale electro-catalysts; however, their low stability remains a major challenge. Among the various performance degradation mechanisms, atomic dissolution is known to cause severe nanoparticle deactivation. To date, the factors influencing these catalysts' durability are not understood. Herein, we assess the role of low-coordination surface sites, focusing on the atomic dissolution of Pt nanoparticles. The density of low coordination sites was finely controlled, and no significant size change occurred. Based on our findings, we suggest that the initial low-coordination sites trigger metal dissolution, which subsequently accelerates Pt dissolution. We believe that controlling the surface coordination number can open new routes for the design of highly durable nanoscale electrocatalysts. (C) 2016 Elsevier B.V. All rights reserved.-
dc.language영어-
dc.publisherElsevier BV-
dc.titleFunctional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles-
dc.typeArticle-
dc.contributor.AlternativeAuthor강기석-
dc.contributor.AlternativeAuthor성영은-
dc.identifier.doi10.1016/j.jpowsour.2016.10.007-
dc.citation.journaltitleJournal of Power Sources-
dc.identifier.wosid000387526100007-
dc.identifier.scopusid2-s2.0-84992053167-
dc.citation.endpage57-
dc.citation.startpage52-
dc.citation.volume334-
dc.identifier.sci000387526100007-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKang, Kisuk-
dc.contributor.affiliatedAuthorSung, Yung-Eun-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusOXYGEN REDUCTION REACTION-
dc.subject.keywordPlusCO MONOLAYER OXIDATION-
dc.subject.keywordPlusTRANSMISSION ELECTRON-MICROSCOPY-
dc.subject.keywordPlusROTATING-DISK ELECTRODE-
dc.subject.keywordPlusCATALYTIC-ACTIVITY-
dc.subject.keywordPlusPARTICLE-SIZE-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusPT-RU-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordAuthorNanoparticle electrocatalyst-
dc.subject.keywordAuthorCoordination number-
dc.subject.keywordAuthorDegradation mechanism-
dc.subject.keywordAuthorOxygen reduction reaction-
dc.subject.keywordAuthorFuel cells-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share