Publications

Detailed Information

Hybrid cellular nanosheets for high-performance lithium-ion battery anodes

DC Field Value Language
dc.contributor.authorYu, Seung-Ho-
dc.contributor.authorLee, Dong Jun-
dc.contributor.authorPark, Mihyun-
dc.contributor.authorKwon, Soon Gu-
dc.contributor.authorLee, Hyeon Seok-
dc.contributor.authorJin, Aihua-
dc.contributor.authorLee, Kug-Seung-
dc.contributor.authorLee, Ji Eun-
dc.contributor.authorOh, Myoung Hwan-
dc.contributor.authorKang, Kisuk-
dc.contributor.authorSung, Yung-Eun-
dc.contributor.authorHyeon, Taeghwan-
dc.date.accessioned2020-04-25T08:05:25Z-
dc.date.available2020-04-25T08:05:25Z-
dc.date.created2018-11-01-
dc.date.created2018-11-01-
dc.date.issued2015-09-
dc.identifier.citationJournal of the American Chemical Society, Vol.137 No.37, pp.11954-11961-
dc.identifier.issn0002-7863-
dc.identifier.other65277-
dc.identifier.urihttps://hdl.handle.net/10371/165078-
dc.description.abstractWe report a simple synthetic method of carbon-based hybrid cellular nanosheets that exhibit outstanding electrochemical performance for many key aspects of lithium-ion battery electrodes. The nanosheets consist of close-packed cubic cavity cells partitioned by carbon walls, resembling plant leaf tissue. We loaded carbon cellular nanosheets with SnO2 nanoparticles by vapor deposition method and tested the performance of the resulting SnO2-carbon nanosheets as anode materials. The specific capacity is 944 mAh g(-1) on average with a retention of 97.0% during 300 cycles, and the reversible capacity is decreased by only 20% as the current density is increased from 200 to 3000 mA g(-1). In order to explain the excellent electrochemical performance, the hybrid cellular nanosheets were analyzed with cyclic voltammetry, in situ X-ray absorption spectroscopy, and transmission electron microscopy. We found that the high packing density, large interior surface area, and rigid carbon wall network are responsible for the high specific capacity, lithiation/delithiation reversibility, and cycling stability. Furthermore, the nanosheet structure leads to the high rate capability due to fast Li-ion diffusion in the thickness direction.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleHybrid cellular nanosheets for high-performance lithium-ion battery anodes-
dc.typeArticle-
dc.contributor.AlternativeAuthor현택환-
dc.contributor.AlternativeAuthor강기석-
dc.contributor.AlternativeAuthor성영은-
dc.identifier.doi10.1021/jacs.5b03673-
dc.citation.journaltitleJournal of the American Chemical Society-
dc.identifier.wosid000361930000026-
dc.identifier.scopusid2-s2.0-84942279248-
dc.citation.endpage11961-
dc.citation.number37-
dc.citation.startpage11954-
dc.citation.volume137-
dc.identifier.sci000361930000026-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKang, Kisuk-
dc.contributor.affiliatedAuthorSung, Yung-Eun-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusMESOCELLULAR CARBON FOAM-
dc.subject.keywordPlusHOLLOW CARBON-
dc.subject.keywordPlusNANOSTRUCTURED MATERIALS-
dc.subject.keywordPlusSTORAGE PROPERTIES-
dc.subject.keywordPlusENERGY-CONVERSION-
dc.subject.keywordPlusMESOPOROUS CARBON-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusSNO2-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusGRAPHENE-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share