Browse

Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy

Cited 42 time in Web of Science Cited 47 time in Scopus
Issue Date
2019-01
Citation
Journal of the American Chemical Society, Vol.141 No.2, pp.763-768
Abstract
Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. Here, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. Our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.
ISSN
0002-7863
URI
https://hdl.handle.net/10371/165804
DOI
https://doi.org/10.1021/jacs.8b11972
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Chemical Convergence for Energy and Environment (에너지환경 화학융합기술전공)Journal Papers (저널논문_에너지환경 화학융합기술전공)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse