Publications

Detailed Information

Microscopic states and the verwey transition of magnetite nanocrystals investigated by nuclear magnetic resonance

DC Field Value Language
dc.contributor.authorLim, Sumin-
dc.contributor.authorChoi, Baeksoon-
dc.contributor.authorLee, Sang Young-
dc.contributor.authorLee, Soonchil-
dc.contributor.authorNahm, Ho-Hyun-
dc.contributor.authorKim, Yong-Hyun-
dc.contributor.authorKim, Taehun-
dc.contributor.authorPark, Je-Geun-
dc.contributor.authorLee, Jisoo-
dc.contributor.authorHong, Jaeyoung-
dc.contributor.authorKwon, Soon Gu-
dc.contributor.authorHyeon, Taeghwan-
dc.date.accessioned2020-04-27T13:26:15Z-
dc.date.available2020-04-27T13:26:15Z-
dc.date.created2018-06-29-
dc.date.issued2018-03-
dc.identifier.citationNano Letters, Vol.18 No.3, pp.1745-1750-
dc.identifier.issn1530-6984-
dc.identifier.other38290-
dc.identifier.urihttps://hdl.handle.net/10371/165862-
dc.description.abstractFe-57 nuclear magnetic resonance (NMR) of magnetite nanocrystals ranging in size from 7 nm to 7 ym is measured. The line width of the NMR spectra changes drastically around 120 K, showing microscopic evidence of the Verwey transition. In the region above the transition temperature, the line width of the spectrum increases and the spin-spin relaxation time decreases as the nanocrystal size decreases. The line-width broadening indicates the significant deformation of magnetic structure and reduction of charge order compared to bulk crystals, even when the structural distortion is unobservable. The reduction of the spin-spin relaxation time is attributed to the suppressed polaron hopping conductivity in ferromagnetic metals, which is a consequence of the enhanced electron-phonon coupling in the quantum-confinement regime. Our results show that the magnetic distortion occurs in the entire nanocrystal and does not comply with the simple model of the core-shell binary structure with a sharp boundary.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleMicroscopic states and the verwey transition of magnetite nanocrystals investigated by nuclear magnetic resonance-
dc.typeArticle-
dc.contributor.AlternativeAuthor박제근-
dc.contributor.AlternativeAuthor현택환-
dc.identifier.doi10.1021/acs.nanolett.7b04866-
dc.citation.journaltitleNano Letters-
dc.identifier.wosid000427910600025-
dc.identifier.scopusid2-s2.0-85043760810-
dc.citation.endpage1750-
dc.citation.number3-
dc.citation.startpage1745-
dc.citation.volume18-
dc.identifier.sci000427910600025-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorPark, Je-Geun-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusIRON-OXIDE NANOPARTICLES-
dc.subject.keywordPlusLOW-TEMPERATURE PHASE-
dc.subject.keywordPlusSIZE-CONTROLLED SYNTHESIS-
dc.subject.keywordPlusMIXED-VALENCE MANGANITES-
dc.subject.keywordPlusQUANTUM DOTS-
dc.subject.keywordPlusFE3O4-
dc.subject.keywordPlusNMR-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusLOCALIZATION-
dc.subject.keywordPlusCONDUCTION-
dc.subject.keywordAuthorMagnetite-
dc.subject.keywordAuthornanocrystal-
dc.subject.keywordAuthorNMR-
dc.subject.keywordAuthorVerwey transition-
dc.subject.keywordAuthorcharge order-
dc.subject.keywordAuthorhopping-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share