Publications
Detailed Information
Dynamic Nanoparticle Assemblies for Biomedical Applications
Cited 171 time in
Web of Science
Cited 186 time in Scopus
- Authors
- Issue Date
- 2017-04
- Citation
- Advanced Materials, Vol.29 No.14, p. 1605897
- Abstract
- Designed synthesis and assembly of nanoparticles assisted by their surface ligands can create " smart" materials with programmed responses to external stimuli for biomedical applications. These assemblies can be designed to respond either exogenously (for example, to magnetic field, temperature, ultrasound, light, or electric pulses) or endogenously (to pH, enzymatic activity, or redox gradients) and play an increasingly important role in a diverse range of biomedical applications, such as biosensors, drug delivery, molecular imaging, and novel theranostic systems. In this review, the recent advances and challenges in the development of stimuli-responsive nanoparticle assemblies are summarized; in particular, the application-driven design of surface ligands for stimuli-responsive nanoparticle assemblies that are capable of sensing small changes in the disease microenvironment, which induce the related changes in their physico-chemical properties, is described. Finally, possible future research directions and problems that have to be addressed are briefly discussed.
- ISSN
- 0935-9648
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.