Publications

Detailed Information

Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level

DC Field Value Language
dc.contributor.authorXiao, Yi-
dc.contributor.authorHong, Jaeyoung-
dc.contributor.authorWang, Xiao-
dc.contributor.authorChen, Tao-
dc.contributor.authorHyeon, Taeghwan-
dc.contributor.authorXu, Weilin-
dc.date.accessioned2021-01-31T04:11:45Z-
dc.date.available2021-01-31T04:11:45Z-
dc.date.created2020-10-28-
dc.date.created2020-10-28-
dc.date.issued2020-07-
dc.identifier.citationJournal of the American Chemical Society, Vol.142 No.30, pp.13201-13209-
dc.identifier.issn0002-7863-
dc.identifier.other114135-
dc.identifier.urihttps://hdl.handle.net/10371/171756-
dc.description.abstractBy combining single-molecule fluorescence microscopy with traditional electrochemical methods, herein we report on the investigation of the electrocatalytic kinetics of two-electron (2e) pathway of oxygen reduction reaction (ORR) on a single Fe3O4 nanoparticle. The kinetic parameters for two-electron ORR process are successfully derived at the single-particle level, and a potential dependence of dynamic heterogeneity among individual nanoparticles is revealed. Furthermore, the performance stability of individual Fe3O4 nanoparticles for 2e ORR process is studied. This study deepens our understanding to the electrocatalytic ORR process, especially the 2e pathway at single-molecule and single-particle levels.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleRevealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level-
dc.typeArticle-
dc.contributor.AlternativeAuthor현택환-
dc.identifier.doi10.1021/jacs.0c06020-
dc.citation.journaltitleJournal of the American Chemical Society-
dc.identifier.wosid000557854400035-
dc.identifier.scopusid2-s2.0-85089611436-
dc.citation.endpage13209-
dc.citation.number30-
dc.citation.startpage13201-
dc.citation.volume142-
dc.identifier.sci000557854400035-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusCATALYTIC-ACTIVITY-
dc.subject.keywordPlusACTIVATION-ENERGY-
dc.subject.keywordPlusH2O2-
dc.subject.keywordPlusELECTROCATALYSIS-
dc.subject.keywordPlusIRON-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusPATHWAYS-
dc.subject.keywordPlusDYNAMICS-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share