Publications

Detailed Information

In situ electrochemical surface modification for high-voltage LiCoO2 in lithium ion batteries

DC Field Value Language
dc.contributor.authorLim, Jungwoo-
dc.contributor.authorChoi, Aram-
dc.contributor.authorKim, Hanseul-
dc.contributor.authorDoo, Sung Wook-
dc.contributor.authorPark, Yuwon-
dc.contributor.authorLee, Kyu Tae-
dc.date.accessioned2021-01-31T08:09:15Z-
dc.date.available2021-01-31T08:09:15Z-
dc.date.created2020-02-14-
dc.date.created2020-02-14-
dc.date.created2020-02-14-
dc.date.issued2019-06-30-
dc.identifier.citationJournal of Power Sources, Vol.426, pp.162-168-
dc.identifier.issn0378-7753-
dc.identifier.other91237-
dc.identifier.urihttps://hdl.handle.net/10371/171851-
dc.description.abstractHigh-voltage LiCoO2 has been revisited to improve the energy density of lithium ion batteries. LiCoO2 can deliver the reversible capacity of about 200 mA h g(-1) when the upper cut-off voltage increases to 4.55 V (vs. Li/Li+). However, the high upper cut-off voltage causes the severe failures of LiCoO2 such as structural degradation, electrolyte decomposition, and Co dissolution. Various surface-modified LiCoO2 materials have been introduced to suppress electrolyte decomposition and Co dissolution, thereby leading to the improved electrochemical performance. Most of the coated LiCoO2 materials are obtained through a conventional coating process such as sol-gel synthesis, which is complex and high-cost. In this paper, the in situ electrochemical coating method is introduced as a simple and low-cost coating process, where the electrolyte additive of Mg salts is electrochemically decomposed to form a MgF2-based coating layer on the LiCoO2 surface. LiCoO2 electrochemically coated with MgF2 suppresses Co dissolution in electrolytes, resulting in excellent electrochemical performance such as high reversible capacity of 198 mA h g(-1) and stable cycle performance over 100 cycles in the voltage range between 3 and 4.55 V (vs. Li/Li+) at 45 degrees C. The formation mechanism of MgF2 is also demonstrated through ex situ XPS and XANES analyses.-
dc.language영어-
dc.publisherElsevier BV-
dc.titleIn situ electrochemical surface modification for high-voltage LiCoO2 in lithium ion batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor이규태-
dc.identifier.doi10.1016/j.jpowsour.2019.04.011-
dc.citation.journaltitleJournal of Power Sources-
dc.identifier.wosid000468250400022-
dc.identifier.scopusid2-s2.0-85064214849-
dc.citation.endpage168-
dc.citation.startpage162-
dc.citation.volume426-
dc.identifier.sci000468250400022-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, Kyu Tae-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusLI-O-2 BATTERIES-
dc.subject.keywordPlusDOPED LICOO2-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusALKALI-
dc.subject.keywordAuthorCathode electrolyte interphase-
dc.subject.keywordAuthorLithium cobalt oxide-
dc.subject.keywordAuthorCathode-
dc.subject.keywordAuthorSurface modification-
dc.subject.keywordAuthorLithium ion batteries-
Appears in Collections:
Files in This Item:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Cross-Field

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share