Browse

Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)(6) as a high-voltage cathode for magnesium batteries

Cited 32 time in Web of Science Cited 36 time in Scopus
Authors
Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae
Issue Date
2016-04
Citation
ACS Applied Materials and Interfaces, Vol.8 No.13, pp.8554-8560
Keywords
magnesium batteryPrussian blue analoguecathodeelectrochemical performanceelectrochemistry
Abstract
Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe-2(CN)(6) and Prussian blue Na0.69Fe2(CN)(6) are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg2+ ions cannot be intercalated in Fe-2(CN)(6), Na0.69Fe2(CN)(6) shows reversible intercalation and deintercalation of Mg2+ ions, although they have the same crystal structure except for the presence of Na+ ions. This phenomenon is attributed to the fact that Mg2+ ions are more stable in Nat-containing Na0.69Fe2(CN)(6) than in Na+-free Fe-2(CN)(6), indicating Nat ions in Na0.69Fe2(CN)(6) plays a crucial role in stabilizing Mg2+ ions. Na0.69Fe2(CN)(6) delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg2+ and shows stable cyde performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg2+ and Na+ ions as charge carriers.
ISSN
1944-8244
URI
https://hdl.handle.net/10371/171863
DOI
https://doi.org/10.1021/acsami.6b01352
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse