Detailed Information

Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells

Cited 92 time in Web of Science Cited 102 time in Scopus

Lee, Tae-Jin; Park, Subeom; Bhang, Suk Ho; Yoon, Jeong-Kee; Jo, Insu; Jeong, Gun-Jae; Hong, Byung Hee; Kim, Byung-Soo

Issue Date
Academic Press
Biochemical and Biophysical Research Communications, Vol.452 No.1, pp.174-180
Graphene has drawn attention as a substrate for stem cell culture and has been reported to stimulate the differentiation of multipotent adult stem cells. Here, we report that graphene enhances the cardiomyogenic differentiation of human embryonic stem cells (hESCs) at least in part, due to nanoroughness of graphene. Large-area graphene on glass coverslips was prepared via the chemical vapor deposition method. The coating of the graphene with vitronectin (VN) was required to ensure high viability of the hESCs cultured on the graphene. hESCs were cultured on either VN-coated glass (glass group) or VN-coated graphene (graphene group) for 21 days. The cells were also cultured on glass coated with Matrigel (Matrigel group), which is a substrate used in conventional, directed cardiomyogenic differentiation systems. The culture of hESCs on graphene promoted the expression of genes involved in the step-wise differentiation into mesodermal and endodermal lineage cells and subsequently cardiomyogenic differentiation compared with the culture on glass or Matrigel. In addition, the culture on graphene enhanced the gene expression of cardiac-specific extracellular matrices. Culture on graphene may provide a new platform for the development of stem cell therapies for ischemic heart diseases by enhancing the cardiomyogenic differentiation of hESCs. (C) 2014 Elsevier Inc. All rights reserved.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Physics


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.