Publications

Detailed Information

Silica Core-based Surface-enhanced Raman Scattering (SERS) Tag: Advances in Multifunctional SERS Nanoprobes for Bioimaging and Targeting of Biomarkers

Cited 32 time in Web of Science Cited 32 time in Scopus
Authors

Jun, Bong-Hyun; Kim, Gunsung; Jeong, Sinyoung; Noh, Mi Suk; Pham, Xuan-Hung; Kang, Homan; Cho, Myung-Haing; Kim, Jong-Ho; Lee, Yoon-Sik; Jeong, Dae Hong

Issue Date
2015-03
Publisher
대한화학회
Citation
Bulletin of the Korean Chemical Society, Vol.36 No.3, pp.963-978
Abstract
Surface-enhanced Raman scattering (SERS) has attracted considerable interest as a sensitive vibration-specific probe for bioanalytical and imaging applications. Among the various bioprobes available, Ag-embedded SERS tags have been rigorously developed for an extensive range of biodetection applications. In this review, we look at the additional functionality that SERS tags can offer via its magnetic properties, fluorescence, and an extension of the optical region into the near-infrared (NIR) spectrum. Such functionality can be achieved by using Ag nanoparticles (NPs) or Au/Ag hollow-shells (HS) as a SERS signaling unit, with SiO2 nanospheres providing a back-bone unit. This back-bone can include a magnetic core (M-SERS dots), but also provides an outer shell that protects the optical unit and allows for easy conjugation of linkers that can include fluorescent organic dyes for an additional optical unit (F-SERS dots). In use, M-SERS dots allow for the separation of target cancer or cancer stem cells with an external magnetic field, while F-SERS dots can rapidly locate specific proteins within large areas of tissue and simultaneously analyze multiple targets based on their Raman signals. Moreover, NIR SERS dots can be detected with a high sensitivity within deep tissues, thus allowing them to be applied to in vivo multiplex detection. As none of these advanced functional SERS dots exhibit any sign of cytotoxicity for cell lines, they demonstrate a clear potential for more efficient, high-throughput screening of biological molecules using Raman technology.
ISSN
0253-2964
URI
https://hdl.handle.net/10371/172349
DOI
https://doi.org/10.1002/bkcs.10179
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Nanotoxicology, Veterinary Toxicology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share