Publications

Detailed Information

Major degradable polycations as carriers for DNA and siRNA

Cited 123 time in Web of Science Cited 128 time in Scopus
Authors

Islam, Mohammad Ariful; Park, Tae-Eun; Singh, Bijay; Maharjan, Sushila; Firdous, Jannatul; Cho, Myung-Haing; Kang, Sang-Kee; Yun, Cheol-Heui; Choi, Yun-Jaie; Cho, Chong-Su

Issue Date
2014-11
Publisher
Elsevier BV
Citation
Journal of Controlled Release, Vol.193, pp.74-89
Abstract
Non-viral gene delivery systems are one of the most potential alternatives to viral vectors because of their less immunogenicity, less toxicity and easy productivity in spite of their low capacity of gene transfection using DNA or silencing using siRNA compared to that of viral vectors. Among non-viral systems, the polycationic derivatives are the most popular gene carriers since they can effectively condense nucleic acids to transfer into the cells, especially the polyethylenimine (PEI) which has been used as a golden standard polymer owing to its high buffering ability for endosomal escape of gene to be expressed. However, PEI has severe problems for its toxicity due to the high positive charge density and non-degradability although the toxicity of PEI depends on its molecular weight (MW) and structure. Therefore, a considerable attention has been paid on synthesis of degradable PEI derivatives using low MW one because low MW PEI is much less toxic than high MW PEI. Other degradable polycationic gene carriers such as polyamidoamines (PAA) and cyclodextrin (CD)-based polycations are also in a significant interest because of their high transfection efficiency with low toxicity. This review in detail explains the recent developments on these three major degradable polycations as promising carriers for deoxyribonucleic acid (DNA) and small interfering RNA (siRNA). (C) 2014 Elsevier B.V. All rights reserved.
ISSN
0168-3659
URI
https://hdl.handle.net/10371/172426
DOI
https://doi.org/10.1016/j.jconrel.2014.05.055
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Nanotoxicology, Veterinary Toxicology

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share