Publications

Detailed Information

Nonpolar Solvent-based Electrolytes with a Quasi-Solid-State Redox Reaction for Lithium-Sulfur Batteries

DC Field Value Language
dc.contributor.authorYang, Hong Sun-
dc.contributor.authorKim, Dong-Min-
dc.contributor.authorKim, Youngjin-
dc.contributor.authorLee, Young Joo-
dc.contributor.authorLee, Kyu Tae-
dc.date.accessioned2022-04-18T05:09:11Z-
dc.date.available2022-04-18T05:09:11Z-
dc.date.created2021-08-13-
dc.date.created2021-08-13-
dc.date.created2021-08-13-
dc.date.issued2021-06-14-
dc.identifier.citationChemElectroChem, Vol.8 No.12, pp.2321-2328-
dc.identifier.issn2196-0216-
dc.identifier.other139399-
dc.identifier.urihttps://hdl.handle.net/10371/178092-
dc.description.abstractLi-S batteries are one of the most promising next-generation batteries because of their high theoretical energy density and abundance of active material sulfur reducing the cost. However, conventional ether-based electrolytes suffer from active material loss due to side reactions between dissolved polysulfides and Li metal anode, and consequential shuttle phenomenon. Herein, a promising concept of nonpolar solvent-based electrolytes consisting of nonpolar solvent of 1,4-difluorobenzene, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, and chelating agent for Li+ cations, such as 15-crown-5 or 1,3-dioxolane, is introduced to suppress the dissolution of polar polysulfides. Nonpolar electrolytes show a distinctive reaction mechanism that involved a quasi-solid-state redox reaction, compared to conventional ether-based electrolytes. The discharge and charge process of nonpolar electrolytes include phase transitions with sparingly soluble and insoluble polysulfides. As a result, nonpolar solvent-based electrolytes show excellent electrochemical performance, such as stable capacity retention and Coulombic efficiency of 93.1 % after 100 cycles at 30 degrees C.-
dc.language영어-
dc.publisherJohn Wiley and Sons Ltd-
dc.titleNonpolar Solvent-based Electrolytes with a Quasi-Solid-State Redox Reaction for Lithium-Sulfur Batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor이규태-
dc.identifier.doi10.1002/celc.202100578-
dc.citation.journaltitleChemElectroChem-
dc.identifier.wosid000674290100023-
dc.identifier.scopusid2-s2.0-85110716611-
dc.citation.endpage2328-
dc.citation.number12-
dc.citation.startpage2321-
dc.citation.volume8-
dc.identifier.sci000674290100023-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, Kyu Tae-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusLI-S BATTERIES-
dc.subject.keywordPlusRECHARGEABLE LITHIUM-
dc.subject.keywordPlusENERGY DENSITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSHUTTLE-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusLINO3-
dc.subject.keywordAuthorlithium-sulfur batteries-
dc.subject.keywordAuthornonpolar electrolytes-
dc.subject.keywordAuthorinsoluble polysulfides-
dc.subject.keywordAuthorquasi-solid-state reaction-
dc.subject.keywordAuthorLi MAS NMR-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Cross-Field

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share