Publications

Detailed Information

Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production

DC Field Value Language
dc.contributor.authorJung, Euiyeon-
dc.contributor.authorShin, Heejong-
dc.contributor.authorLee, Byoung-Hoon-
dc.contributor.authorEfremov, Vladimir-
dc.contributor.authorLee, Suhyeong-
dc.contributor.authorLee, Hyeon Seok-
dc.contributor.authorKim, Jiheon-
dc.contributor.authorHooch Antink, Wytse-
dc.contributor.authorPark, Subin-
dc.contributor.authorLee, Kug-Seung-
dc.contributor.authorCho, Sung-Pyo-
dc.contributor.authorYoo, Jong Suk-
dc.contributor.authorSung, Yung-Eun-
dc.contributor.authorHyeon, Taeghwan-
dc.date.accessioned2022-04-21T01:18:17Z-
dc.date.available2022-04-21T01:18:17Z-
dc.date.created2021-02-02-
dc.date.created2021-02-02-
dc.date.created2021-02-02-
dc.date.issued2020-04-
dc.identifier.citationNature Materials, Vol.19 No.4, pp.436-442-
dc.identifier.issn1476-1122-
dc.identifier.other122099-
dc.identifier.urihttps://hdl.handle.net/10371/179175-
dc.description.abstractDespite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H2O2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co-N-4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co-N-4 moiety incorporated in nitrogen-doped graphene for H2O2 production and exhibits a kinetic current density of 2.8 mA cm(-2) (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g(-1) (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H2O2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co-N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H2O2 production.-
dc.language영어-
dc.publisherNature Research-
dc.titleAtomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production-
dc.typeArticle-
dc.contributor.AlternativeAuthor현택환-
dc.contributor.AlternativeAuthor성영은-
dc.identifier.doi10.1038/s41563-019-0571-5-
dc.citation.journaltitleNature Materials-
dc.identifier.wosid000508172300004-
dc.identifier.scopusid2-s2.0-85078033106-
dc.citation.endpage442-
dc.citation.number4-
dc.citation.startpage436-
dc.citation.volume19-
dc.identifier.sci000508172300004-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorSung, Yung-Eun-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusELECTROCATALYSIS-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSITES-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share