Browse

Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review

Cited 0 time in Web of Science Cited 0 time in Scopus
Issue Date
2020-11
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Animals, Vol.10 No.11, p. 2068
Abstract
Simple Summary Tenebrio molitor (T. molitor) larvae, known as mealworm, have been considered a good protein source for monogastric animals. They have a high quantity and quality of protein content and amino acid profile. The inclusion of T. molitor larvae in broiler diets improved the growth performance without having negative effects on carcass traits and blood profiles in broiler chickens, or had no influence on the growth performance and carcass yield of broiler chickens. The supplementation of T. molitor larvae improved the growth performance and protein utilization of weaning pigs. Furthermore, the replacement of fishmeal with T. molitor larvae resulted in no difference in the growth performance and nutrient digestibility of weaning pigs. However, there are some challenges regarding biosafety, consumer's acceptance, and price for the use of T. moiltor larvae in animal feed. Consequently, T. molitor larvae could be used as an alternative or sustainable protein source in monogastric animal feed. Edible insects have been used as an alternative protein source for food and animal feed, and the market size for edible insects has increased. Tenebrio molitor larvae, also known as mealworm and yellow mealworm, are considered a good protein source with nutritional value, digestibility, flavor, and a functional ability. Additionally, they are easy to breed and feed for having a stable protein content, regardless of their diets. Therefore, T. molitor larvae have been produced industrially as feed for pets, zoo animals, and even for production animals. To maintain the nutrient composition and safety of T. molitor larvae, slaughtering (heating or freezing) and post-slaughtering (drying and grinding) procedures should be improved for animal feed. T. molitor larvae are also processed with defatting or hydrolysis before grinding. They have a high quality and quantity of protein and amino acid profile, so are considered a highly sustainable protein source for replacing soybean meal or fishmeal. T. molitor has a chitin in its cuticle, which is an indigestible fiber with positive effects on the immune system. In studies of poultry, the supplementation of T. molitor larvae improved the growth performance of broiler chickens, without having negative effects on carcass traits, whereas some studies have reported that there were no significant differences in the growth performance and carcass yield of broiler chickens. In studies of swine, the supplementation of T. molitor larvae improved the growth performance and protein utilization of weaning pigs. Furthermore, 10% of T. molitor larvae showed greater amino acid digestibility than conventional animal proteins in growing pigs. However, there are some challenges regarding the biosafety, consumer's acceptance, and price for the use of T. moiltor larvae in animal feed. Consequently, T. molitor larvae could be used as an alternative or sustainable protein source in monogastric animal feed with a consideration of the nutritional values, biosafety, consumer's acceptance, and market price of T. molitor larvae products.
ISSN
2076-2615
URI
https://hdl.handle.net/10371/179911
Files in This Item:
Appears in Collections:
College of Agriculture and Life Sciences (농업생명과학대학)Dept. of Agricultural Biotechnology (농생명공학부)Journal Papers (저널논문_농생명공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse