Publications

Detailed Information

Regioselective One-Pot Synthesis of Hydroxy-(S)-Equols Using Isoflavonoid Reductases and Monooxygenases and Evaluation of the Hydroxyequol Derivatives as Selective Estrogen Receptor Modulators and Antioxidants

DC Field Value Language
dc.contributor.authorSong, Hanbit-
dc.contributor.authorLee, Pyung-Gang-
dc.contributor.authorKim, Junyeob-
dc.contributor.authorKim, Joonwon-
dc.contributor.authorLee, Sang-Hyuk-
dc.contributor.authorKim, Hyun-
dc.contributor.authorLee, Uk-Jae-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorKim, Eun-Jung-
dc.contributor.authorKim, Byung-Gee-
dc.date.accessioned2022-06-27T00:11:49Z-
dc.date.available2022-06-27T00:11:49Z-
dc.date.created2022-05-23-
dc.date.issued2022-03-
dc.identifier.citationFrontiers in Bioengineering and Biotechnology, Vol.10, p. 830712-
dc.identifier.issn2296-4185-
dc.identifier.urihttps://hdl.handle.net/10371/184176-
dc.description.abstractCopyright © 2022 Song, Lee, Kim, Kim, Lee, Kim, Lee, Kim, Kim and Kim.Several regiospecific enantiomers of hydroxy-(S)-equol (HE) were enzymatically synthesized from daidzein and genistein using consecutive reduction (four daidzein-to-equol–converting reductases) and oxidation (4-hydroxyphenylacetate 3-monooxygenase, HpaBC). Despite the natural occurrence of several HEs, most of them had not been studied owing to the lack of their preparation methods. Herein, the one-pot synthesis pathway of 6-hydroxyequol (6HE) was developed using HpaBC (EcHpaB) from Escherichia coli and (S)-equol-producing E. coli, previously developed by our group. Based on docking analysis of the substrate or products, a potential active site and several key residues for substrate binding were predicted to interpret the (S)-equol hydroxylation regioselectivity of EcHpaB. Through investigating mutations on the key residues, the T292A variant was verified to display specific mono-ortho-hydroxylation activity at C6 without further 3′-hydroxylation. In the consecutive oxidoreductive bioconversion using T292A, 0.95 mM 6HE could be synthesized from 1 mM daidzein, while 5HE and 3′HE were also prepared from genistein and 3′-hydroxydaidzein (3′HD or 3′-ODI), respectively. In the following efficacy tests, 3′HE and 6HE showed about 30∼200-fold higher EC50 than (S)-equol in both ERα and ERβ, and they did not have significant SERM efficacy except 6HE showing 10% lower β/α ratio response than that of 17β-estradiol. In DPPH radical scavenging assay, 3′HE showed the highest antioxidative activity among the examined isoflavone derivatives: more than 40% higher than the well-known 3′HD. In conclusion, we demonstrated that HEs could be produced efficiently and regioselectively through the one-pot bioconversion platform and evaluated estrogenic and antioxidative activities of each HE regio-isomer for the first time.-
dc.language영어-
dc.publisherFrontiers Research Foundation-
dc.titleRegioselective One-Pot Synthesis of Hydroxy-(S)-Equols Using Isoflavonoid Reductases and Monooxygenases and Evaluation of the Hydroxyequol Derivatives as Selective Estrogen Receptor Modulators and Antioxidants-
dc.typeArticle-
dc.identifier.doi10.3389/fbioe.2022.830712-
dc.citation.journaltitleFrontiers in Bioengineering and Biotechnology-
dc.identifier.scopusid2-s2.0-85128232854-
dc.citation.startpage830712-
dc.citation.volume10-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorKim, Byung-Gee-
dc.type.docTypeArticle-
dc.description.journalClass1-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share