Publications

Detailed Information

Graphene Via Contact Architecture for Vertical Integration of vdW Heterostructure Devices

Cited 6 time in Web of Science Cited 6 time in Scopus
Authors

Shin, Yongjun; Kwon, Junyoung; Jeong, Yeonsu; Watanabe, Kenji; Taniguchi, Takashi; Im, Seongil; Lee, Gwan-Hyoung

Issue Date
2022-07
Publisher
Wiley - V C H Verlag GmbbH & Co.
Citation
Small, Vol.18 No.28, p. 2200882
Abstract
Two-dimensional (2D) devices and their van der Waals (vdW) heterostructures attract considerable attention owing to their potential for next-generation logic and memory applications. In addition, 2D devices are projected to have high integration capabilities, while maintaining nanoscale thickness. However, the fabrication of 2D devices and their circuits is challenging because of the high precision required to etch and pattern ultrathin 2D materials for integration. Here, the fabrication of a graphene via contact architecture to electrically connect graphene electrodes (or leads) embedded in vdW heterostructures is demonstrated. Graphene via contacts comprising of edge and fluorinated graphene (FG) electrodes are fabricated by successive fluorination and plasma etching processes. A one-step fabrication process that utilizes the graphene contacts is developed for a vertically integrated complementary inverter based on n- and p-type 2D field-effect transistors (FETs). This study provides a promising method to fabricate vertically integrated 2D devices, which are essential in 2D material-based devices and circuits.
ISSN
1613-6810
URI
https://hdl.handle.net/10371/184529
DOI
https://doi.org/10.1002/smll.202200882
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share